Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.10.008

Inverted structure perovskite solar cells: A theoretical study  

Sahu, Anurag (Department of Physics and Centre for Solar Energy, Indian Institute of Technology Jodhpur)
Dixit, Ambesh (Department of Physics and Centre for Solar Energy, Indian Institute of Technology Jodhpur)
Abstract
We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.
Keywords
Perovskite solar cell; Inverted planer structure; Conduction and valance band offset; Photo-voltaic device modelling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.M. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Organometal halide perovskites as visible- light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051, https://doi.org/10.1021/ja809598r.   DOI
2 W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science (80-. ) 348 (2015) 1234-1237, https://doi.org/10.1126/science.aaa9272.   DOI
3 G. Giorgi, J.I. Fujisawa, H. Segawa, K. Yamashita, Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis, J. Phys. Chem. Lett. 4 (2013) 4213-4216, https://doi.org/10.1021/jz4023865.   DOI
4 S.J. Fonash, Solar Cell Device Physics, second ed., Academic Press, BURLINGTON, 2010, https://doi.org/10.1016/0025-5408(82)90173-8.
5 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 um in solution-grown CH 3 NH 3 PbI 3 single crystals, Science (80-. ) 347 (2015) 967-970, https://doi.org/10.1126/science.aaa5760.   DOI
6 T. Leijtens, I.K. Ding, T. Giovenzana, J.T. Bloking, M.D. McGehee, A. Sellinger, Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells, ACS Nano 6 (2012) 1455-1462, https://doi.org/10.1021/nn204296b.   DOI
7 Physical constant of organic compound" in CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM version 2010), D.R. Lide, ed., CRC Press/Taylor and Francis, Boca-Raton, Florida, pp 12-144.
8 W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, Y. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nat. Commun. 6 (2015) 1-7, https://doi.org/10.1038/ncomms7700.   DOI
9 E. Zheng, X.F. Wang, J. Song, L. Yan, W. Tian, T. Miyasaka, PbI2-Based dipping-controlled material conversion for compact layer free perovskite solar cells, ACS Appl. Mater. Interfaces 7 (2015) 18156-18162, https://doi.org/10.1021/acsami.5b05787.   DOI
10 A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, O.M. Bakr, Formamidinium lead halide perovskite crystals with unprecedented long Carrier dynamics and diffusion length, ACS Energy Lett. 1 (2016) 32-37, https://doi.org/10.1021/acsenergylett.6b00002.   DOI
11 T. Dullweber, O. Lundberg, J. Malmstrom, M. Bodegard, L. Stolt, U. Rau, H.W. Schock, J.H. Werner, Back surface band gap gradings in Cu(In,Ga)Se2 solar cells, Thin Solid Films 387 (2001) 11-13, https://doi.org/10.1016/S0040-6090(00)01726-0.   DOI
12 T. Minemoto, J. Julayhi, Buffer-less Cu(In,Ga)Se2 solar cells by band offset control using novel transparent electrode, Curr. Appl. Phys. 13 (2013) 103-106, https://doi.org/10.1016/j.cap.2012.06.019.   DOI
13 A. Niemegeers, M. Burgelman, Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells, J. Appl. Phys. 81 (1997) 2881-2886, https://doi.org/10.1063/1.363946.   DOI
14 F. Liu, J. Zhu, J. Wei, Y. Li, M. Lv, S. Yang, B. Zhang, J. Yao, S. Dai, Numerical simulation: toward the design of high-efficiency planar perovskite solar cells, Appl. Phys. Lett. 104 (2014) 1-5, https://doi.org/10.1063/1.4885367.   DOI
15 H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Gratzel, N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 1-7, https://doi.org/10.1038/srep00591.   DOI
16 M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science (80-. ) 338 (2012) 643-646.   DOI
17 S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2014) 341-344, https://doi.org/10.1126/science.1243982.   DOI
18 P. Nollet, M. Kontges, M. Burgelman, S. Degrave, R. Reineke-Koch, Indications for presence and importance of interface states in CdTe/CdS solar cells, Thin Solid Films 431-432 (2003) 414-420, https://doi.org/10.1016/S0040-6090(03)00201-3.   DOI
19 T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells 67 (2001) 83-88, https://doi.org/10.1016/S0927-0248(00)00266-X.   DOI
20 D. Hironiwa, M. Murata, N. Ashida, Z. Tang, T. Minemoto, Simulation of optimum band-gap grading profile of Cu2ZnSn ( S , Se ) 4 solar cells with different optical and defect properties with different optical and defect properties, Jpn. J. Appl. Phys. 53 (2014) 71201 10.7567.   DOI
21 T. Minemoto, M. Murata, Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells, J. Appl. Phys. 116 (2014), https://doi.org/10.1063/1.4891982.   DOI
22 G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells, Adv. Funct. Mater. 24 (2014) 151-157, https://doi.org/10.1002/adfm.201302090.   DOI
23 J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin film perovskite solar cells, Energy Environ. Sci. 6 (2013) 1739-1743, https://doi.org/10.1039/c3ee40810h.   DOI
24 M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395-398, https://doi.org/10.1038/nature12509.   DOI
25 Y. Yang, J. You, Z. Hong, Q. Chen, M. Cai, T. Bin Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano 8 (2014) 1674-1680, https://doi.org/10.1021/nn406020d.   DOI
26 W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells, Energy Environ. Sci. 6 (2013) 3249, https://doi.org/10.1039/c3ee42282h.   DOI
27 A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, A hole-conductor - free, fully printable mesoscopic perovskite solar cell with high stability, Science (80-. ) 345 (2014) 295-298, https://doi.org/10.1126/science.1254763.   DOI
28 D. Liu, J. Yang, T.L. Kelly, Compact layer free perovskite solar cells with 13.5% efficiency, J. Am. Chem. Soc. 136 (2014) 17116-17122, https://doi.org/10.1021/ja508758k.   DOI
29 T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells, Sol. Energy Mater. Sol. Cells 133 (2015) 8-14, https://doi.org/10.1016/j.solmat.2014.10.036.   DOI
30 T. Minemoto, M. Murata, Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation, Curr. Appl. Phys. 14 (2014) 1428-1433, https://doi.org/10.1016/j.cap.2014.08.002.   DOI
31 M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361 (2000) 527-532, https://doi.org/10.1016/S0040-6090(99)00825-1.   DOI
32 K.R. Adhikari, S. Gurung, B.K. Bhattarai, B.M. Soucase, Comparative study on MAPbI3 based solar cells using different electron transporting materials, Phys. Status Solidi Curr. Top. Solid State Phys. 13 (2016) 13-17, https://doi.org/10.1002/pssc.201510078.   DOI
33 L. Huang, X. Sun, C. Li, R. Xu, J. Xu, Y. Du, Y. Wu, J. Ni, H. Cai, J. Li, Z. Hu, J. Zhang, Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation, Sol. Energy Mater. Sol. Cells 157 (2016) 1038-1047, https://doi.org/10.1016/j.solmat.2016.08.025.   DOI
34 M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, N. Miura, Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3, Phys. B Condens. Matter 201 (1994) 427-430.   DOI
35 S. Bansal, P. Aryal, Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1d simulations, 2016 IEEE 43rd Photovolt. Spec. Conf. 2016, pp. 747-750, , https://doi.org/10.1109/PVSC.2016.7749702.   DOI
36 M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy 120 (2015) 370-380, https://doi.org/10.1016/j.solener.2015.07.040.   DOI
37 W. Chia-Ching, Y. Cheng-Fu, Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method, Nanoscale Res. Lett. 8 (2013) 1-5, https://doi.org/10.1186/1556-276X-8-33.   DOI
38 C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide, Science (80-. ) 293 (2001) 673-676, https://doi.org/10.1126/science.1061655.   DOI
39 P.J. Gielisse, J.N. Plendl, L.C. Mansur, R. Marshall, S.S. Mitra, R. Mykolajewycz, A. Smakula, Infrared properties of NiO and CoO and their mixed crystals, J. Appl. Phys. 36 (1965) 2446-2450, https://doi.org/10.1063/1.1714508.   DOI
40 C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge Carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater. 26 (2014) 1584-1589, https://doi.org/10.1002/adma.201305172.   DOI
41 M. Tyagi, M. Tomar, V. Gupta, Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor, Anal. Chim. Acta 726 (2012) 93-101, https://doi.org/10.1016/j.aca.2012.03.027.   DOI
42 J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764-1769, https://doi.org/10.1021/nl400349b.   DOI
43 M.D. Irwin, J.D. Servaites, D.B. Buchholz, B.J. Leever, J. Liu, J.D. Emery, M. Zhang, J.H. Song, M.F. Durstock, A.J. Freeman, M.J. Bedzyk, M.C. Hersam, R.P.H. Chang, M.A. Ratner, T.J. Marks, Structural and electrical functionality of NiO interfacial films in bulk heterojunction organic solar cells, Chem. Mater. 23 (2011) 2218-2226, https://doi.org/10.1021/cm200229e.   DOI