DOI QR코드

DOI QR Code

Inverted structure perovskite solar cells: A theoretical study

  • Sahu, Anurag (Department of Physics and Centre for Solar Energy, Indian Institute of Technology Jodhpur) ;
  • Dixit, Ambesh (Department of Physics and Centre for Solar Energy, Indian Institute of Technology Jodhpur)
  • Received : 2018.04.28
  • Accepted : 2018.10.15
  • Published : 2018.12.31

Abstract

We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.

Keywords

References

  1. T.M. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Organometal halide perovskites as visible- light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051, https://doi.org/10.1021/ja809598r.
  2. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science (80-. ) 348 (2015) 1234-1237, https://doi.org/10.1126/science.aaa9272.
  3. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Gratzel, N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 1-7, https://doi.org/10.1038/srep00591.
  4. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science (80-. ) 338 (2012) 643-646. https://doi.org/10.1126/science.1228604
  5. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2014) 341-344, https://doi.org/10.1126/science.1243982.
  6. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin film perovskite solar cells, Energy Environ. Sci. 6 (2013) 1739-1743, https://doi.org/10.1039/c3ee40810h.
  7. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395-398, https://doi.org/10.1038/nature12509.
  8. Y. Yang, J. You, Z. Hong, Q. Chen, M. Cai, T. Bin Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano 8 (2014) 1674-1680, https://doi.org/10.1021/nn406020d.
  9. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells, Adv. Funct. Mater. 24 (2014) 151-157, https://doi.org/10.1002/adfm.201302090.
  10. W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells, Energy Environ. Sci. 6 (2013) 3249, https://doi.org/10.1039/c3ee42282h.
  11. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, A hole-conductor - free, fully printable mesoscopic perovskite solar cell with high stability, Science (80-. ) 345 (2014) 295-298, https://doi.org/10.1126/science.1254763.
  12. D. Liu, J. Yang, T.L. Kelly, Compact layer free perovskite solar cells with 13.5% efficiency, J. Am. Chem. Soc. 136 (2014) 17116-17122, https://doi.org/10.1021/ja508758k.
  13. W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, Y. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells, Nat. Commun. 6 (2015) 1-7, https://doi.org/10.1038/ncomms7700.
  14. E. Zheng, X.F. Wang, J. Song, L. Yan, W. Tian, T. Miyasaka, PbI2-Based dipping-controlled material conversion for compact layer free perovskite solar cells, ACS Appl. Mater. Interfaces 7 (2015) 18156-18162, https://doi.org/10.1021/acsami.5b05787.
  15. A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, O.M. Bakr, Formamidinium lead halide perovskite crystals with unprecedented long Carrier dynamics and diffusion length, ACS Energy Lett. 1 (2016) 32-37, https://doi.org/10.1021/acsenergylett.6b00002.
  16. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 um in solution-grown CH 3 NH 3 PbI 3 single crystals, Science (80-. ) 347 (2015) 967-970, https://doi.org/10.1126/science.aaa5760.
  17. T. Dullweber, O. Lundberg, J. Malmstrom, M. Bodegard, L. Stolt, U. Rau, H.W. Schock, J.H. Werner, Back surface band gap gradings in Cu(In,Ga)Se2 solar cells, Thin Solid Films 387 (2001) 11-13, https://doi.org/10.1016/S0040-6090(00)01726-0.
  18. T. Minemoto, J. Julayhi, Buffer-less Cu(In,Ga)Se2 solar cells by band offset control using novel transparent electrode, Curr. Appl. Phys. 13 (2013) 103-106, https://doi.org/10.1016/j.cap.2012.06.019.
  19. A. Niemegeers, M. Burgelman, Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells, J. Appl. Phys. 81 (1997) 2881-2886, https://doi.org/10.1063/1.363946.
  20. P. Nollet, M. Kontges, M. Burgelman, S. Degrave, R. Reineke-Koch, Indications for presence and importance of interface states in CdTe/CdS solar cells, Thin Solid Films 431-432 (2003) 414-420, https://doi.org/10.1016/S0040-6090(03)00201-3.
  21. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells 67 (2001) 83-88, https://doi.org/10.1016/S0927-0248(00)00266-X.
  22. D. Hironiwa, M. Murata, N. Ashida, Z. Tang, T. Minemoto, Simulation of optimum band-gap grading profile of Cu2ZnSn ( S , Se ) 4 solar cells with different optical and defect properties with different optical and defect properties, Jpn. J. Appl. Phys. 53 (2014) 71201 10.7567. https://doi.org/10.7567/JJAP.53.071201
  23. F. Liu, J. Zhu, J. Wei, Y. Li, M. Lv, S. Yang, B. Zhang, J. Yao, S. Dai, Numerical simulation: toward the design of high-efficiency planar perovskite solar cells, Appl. Phys. Lett. 104 (2014) 1-5, https://doi.org/10.1063/1.4885367.
  24. T. Minemoto, M. Murata, Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells, J. Appl. Phys. 116 (2014), https://doi.org/10.1063/1.4891982.
  25. T. Minemoto, M. Murata, Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation, Curr. Appl. Phys. 14 (2014) 1428-1433, https://doi.org/10.1016/j.cap.2014.08.002.
  26. T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells, Sol. Energy Mater. Sol. Cells 133 (2015) 8-14, https://doi.org/10.1016/j.solmat.2014.10.036.
  27. K.R. Adhikari, S. Gurung, B.K. Bhattarai, B.M. Soucase, Comparative study on MAPbI3 based solar cells using different electron transporting materials, Phys. Status Solidi Curr. Top. Solid State Phys. 13 (2016) 13-17, https://doi.org/10.1002/pssc.201510078.
  28. L. Huang, X. Sun, C. Li, R. Xu, J. Xu, Y. Du, Y. Wu, J. Ni, H. Cai, J. Li, Z. Hu, J. Zhang, Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation, Sol. Energy Mater. Sol. Cells 157 (2016) 1038-1047, https://doi.org/10.1016/j.solmat.2016.08.025.
  29. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, N. Miura, Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3, Phys. B Condens. Matter 201 (1994) 427-430. https://doi.org/10.1016/0921-4526(94)91130-4
  30. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361 (2000) 527-532, https://doi.org/10.1016/S0040-6090(99)00825-1.
  31. S. Bansal, P. Aryal, Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1d simulations, 2016 IEEE 43rd Photovolt. Spec. Conf. 2016, pp. 747-750, , https://doi.org/10.1109/PVSC.2016.7749702.
  32. M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy 120 (2015) 370-380, https://doi.org/10.1016/j.solener.2015.07.040.
  33. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide, Science (80-. ) 293 (2001) 673-676, https://doi.org/10.1126/science.1061655.
  34. P.J. Gielisse, J.N. Plendl, L.C. Mansur, R. Marshall, S.S. Mitra, R. Mykolajewycz, A. Smakula, Infrared properties of NiO and CoO and their mixed crystals, J. Appl. Phys. 36 (1965) 2446-2450, https://doi.org/10.1063/1.1714508.
  35. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge Carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater. 26 (2014) 1584-1589, https://doi.org/10.1002/adma.201305172.
  36. W. Chia-Ching, Y. Cheng-Fu, Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method, Nanoscale Res. Lett. 8 (2013) 1-5, https://doi.org/10.1186/1556-276X-8-33.
  37. M. Tyagi, M. Tomar, V. Gupta, Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor, Anal. Chim. Acta 726 (2012) 93-101, https://doi.org/10.1016/j.aca.2012.03.027.
  38. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764-1769, https://doi.org/10.1021/nl400349b.
  39. M.D. Irwin, J.D. Servaites, D.B. Buchholz, B.J. Leever, J. Liu, J.D. Emery, M. Zhang, J.H. Song, M.F. Durstock, A.J. Freeman, M.J. Bedzyk, M.C. Hersam, R.P.H. Chang, M.A. Ratner, T.J. Marks, Structural and electrical functionality of NiO interfacial films in bulk heterojunction organic solar cells, Chem. Mater. 23 (2011) 2218-2226, https://doi.org/10.1021/cm200229e.
  40. G. Giorgi, J.I. Fujisawa, H. Segawa, K. Yamashita, Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis, J. Phys. Chem. Lett. 4 (2013) 4213-4216, https://doi.org/10.1021/jz4023865.
  41. S.J. Fonash, Solar Cell Device Physics, second ed., Academic Press, BURLINGTON, 2010, https://doi.org/10.1016/0025-5408(82)90173-8.
  42. T. Leijtens, I.K. Ding, T. Giovenzana, J.T. Bloking, M.D. McGehee, A. Sellinger, Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells, ACS Nano 6 (2012) 1455-1462, https://doi.org/10.1021/nn204296b.
  43. Physical constant of organic compound" in CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM version 2010), D.R. Lide, ed., CRC Press/Taylor and Francis, Boca-Raton, Florida, pp 12-144.

Cited by

  1. Numerical Study of Cu 2 O, SrCu 2 O 2 , and CuAlO 2 as Hole‐Transport Materials for Application in Perovskite Solar Cells vol.216, pp.18, 2019, https://doi.org/10.1002/pssa.201900337
  2. A theoretical study for high-performance inverted p-i-n architecture perovskite solar cells with cuprous iodide as hole transport material vol.20, pp.9, 2018, https://doi.org/10.1016/j.cap.2020.06.022
  3. Theoretical study of highly efficient CH3NH3SnI3 based perovskite solar cell with CuInS2 quantum dot vol.37, pp.2, 2018, https://doi.org/10.1088/1361-6641/ac4325