• 제목/요약/키워드: phenylalanine ammonia-lyase

검색결과 81건 처리시간 0.031초

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review

  • Lim, Jung-Eun;Cho, Min-Ji;Yun, Hye-Jin;Ha, Sang-Keun;Lee, Deog-Bae;Sung, Jwa-Kyung
    • 한국토양비료학회지
    • /
    • 제49권2호
    • /
    • pp.168-180
    • /
    • 2016
  • Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.

Effect of Burkholderia contaminans on Postharvest Diseases and Induced Resistance of Strawberry Fruits

  • Wang, Xiaoran;Shi, Junfeng;Wang, Rufu
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.403-411
    • /
    • 2018
  • This study takes strawberry-fruits as the test material and discusses the effect of Burkholderia contaminans B-1 on preventing postharvest diseases and inducing resistance-related substances in strawberry-fruits. Soaking and wound inoculating is performed to analyze the inhibitory effects of different treatment solutions on the gray mold of postharvest strawberry-fruits. The count of antagonistic bacteria colonies in the wound is found, and the dynamic growth of antagonistic bacteria and the pathogenic fungus is observed by electron microscopy. The results indicated that, either by soaking/wound-inoculating, the fermentation and suspension of antagonistic bacteria significantly reduced the incidence of postharvest diseases of strawberry-fruits. With wound inoculation, the inhibition rate of antagonist fermentation and suspension ($1{\times}10^{10}cfu/ml$) respectively reached 77.4% and 66.7%. It also led to a significant increase in the activity of resistance-related enzymes, i.e., phenylalanine ammonia lyase (PAL), 4-coumarate coenzyme A ligase (4CL), cinnamate-4-hydroxylase (C4H) and chalcone isomerase (CHI). On 1 d and 2 d post-treatment, the activity of 4CL was respectively 3.78 and 6.1 times of the control, and on 5 d, the activity of PAL was increased by 4.47 times the control. The treatment of antagonistic bacteria delayed the peaking of cinnamyl-alcohol dehydrogenase (CAD) activity and promoted the accumulation of lignin and total phenols. The antagonistic bacteria could be well colonized in the wounds. On 4-5 d post-inoculation, the count of colonies was $10^8$ times of that upon inoculation. Electronmicroscopy indicated that the antagonistic bacteria delayed the germination of pathogenic spores in the wounds, and inhibited further elongations of the mycelia.

Proteome characterization of the liquid cultured tetraploid roots in Platycodon grandiflorum

  • Ko, Jung-Hee;Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.125-125
    • /
    • 2017
  • The roots of Platycodon grandiflorum are commonly used for treating bronchitis, asthma, tuberculosis, diabetes, and other inflammatory diseases. Since the molecular mechanism underlying the roots of the plant is unclear. Therefore, the present study was conducted to profile proteins from liquid cultured tetraploid roots of Platycodon grandi orum fl using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 659 differentially expressed proteins were identified from the liquid medium cultured tetraploid roots of which 32 proteins spots (${\geq}1.5-fold$) were sorted for mass spectrometry analysis. Out of these 32 proteins, a total of 15 proteins were up-regulated such as Serine carboxypeptidase-like 27, Transcription factor bHLH150, 60 kDa jasmonate-induced protein, Cytosolic Fe-S cluster assembly factor NBP35, Regulatory associated protein of TOR 2 and a total of 17 proteins were down-regulated such as Protein G1-like2, Phenylalanine ammonia-lyase, Fructokinase-2, Trihelix transcription factor GT-3a, Guanine nucleotide-binding protein alpha-1 subunit. However, the frequency distribution of identified proteins was carried out within functional categories based on molecular functions, cellular components, and biological processes. Functional categorization revealed that the most of the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase, transferase activity, protein binding and hydrolase activity. In addition, the proteomic feedback of tetraploid roots of P. grandiflorum may potentially be used to understand the characteristics of proteins and their functions.

  • PDF

Effect of Fungal Elicitor and Heavy Metals on the Production of Flavonol Glycosides in Cell Cultures of Ginkgo biloba

  • KIM, MIN SOO;CHUL KIM;DO HYUN JO;YEON WOO RYU
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.661-667
    • /
    • 1999
  • The effect of fungal elicitor and heavy metal salts on the production of flavonol glycosides in cell cultures of Ginkgo biloba was investigated. Among the fungi tested, Trichoderma longibrachiatum ATCC 52326 was found to be the most efficient in the production of flavonol glycosides. Kaempferol production from the elicited callus increased ten-fold as compared to the unelicited callus, while quercetin concentration of elicited cells was nine-fold higher than that of uneliceited cells in suspension cultures. The maximum quercetin concentration of 0.362㎎/l was obtained in 1.25㎎/l of the homogenate elicitor. Among the heavy metal salts tested, CuSO₄ showed a significant effect on quercetin accumulation, reaching to the concentration of 0.526 ㎎/l. Quercetin concentration increased to a maximum of l2-fold in response to CuSO₄ treatment as compared to that of untreated cells. The phenylalanine ammonia-lyase (PAL) activity and flavonol glycosides production simultaneously increased for 5 days of culture after fungal elicitor feeding, and their contents showed the same proportional patterns during the culture period. In contrast, PAL activity of cell cultures treated with CuSO₄ was almost constant during the culture period, although quercetin production increased remarkably.

  • PDF

Antiviral Activity of the Exopolysaccharide Produced by Serratia sp. Strain Gsm01 Against Cucumber Mosaic Virus

  • Ipper, Nagesh S.;Cho, Sae-Youll;Lee, Seon-Hwa;Cho, Jun-Mo;Hur, Jang-Hyun;Lim, Chun-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.67-73
    • /
    • 2008
  • The potential of the exopolysaccharide (EPS) from a Serratia sp. strain Gsm01 as an antiviral agent against a yellow strain of Cucumber mosaic virus (CMV-Y) was evaluated in tobacco plants (Nicotiana tabacum cv. Xanthi-nc). The spray treatment of plants using an EPS preparation, 72h before CMV-Y inoculation, protected them against symptom appearance. Fifteen days after challenge inoculation with CMV-Y, 33.33% of plants showed mosaic symptoms in EPS-treated plants compared with 100% in the control plants. The EPS-treated plants, which showed mosaic symptoms, appeared three days later than the controls. The enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of the leaves of the protected plants revealed that the EPS treatment affected virus accumulation in those plants. Analysis of phenylalanine ammonia lyase, peroxidase, and phenols in protected plants revealed enhanced accumulation of these substances. The pathogenesis-related (PR) genes expression represented by PR-lb was increased in EPS-treated plants. This is the first report of a systemic induction of protection triggered by EPS produced by Serratia sp. against CMV-Y.

Hexanal Vapor Induced Resistance against Major Postharvest Pathogens of Banana (Musa acuminata L.)

  • Dhakshinamoorthy, Durgadevi;Sundaresan, Srivignesh;Iyadurai, Arumukapravin;Subramanian, Kizhaeral Sevathapandian;Janavi, Gnanaguru Janaki;Paliyath, Gopinathan;Subramanian, Jayasankar
    • The Plant Pathology Journal
    • /
    • 제36권2호
    • /
    • pp.133-147
    • /
    • 2020
  • Hexanal, a C-6 aldehyde has been implicated to have antimicrobial properties. Hence, this study was conducted to determine the antifungal activities of hexanal vapor against major postharvest pathogens of banana viz., Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured in vitro and exposed to hexanal vapor at 600, 800, 1,000 and 1,200 ppm. Mycelial growth of both fungal pathogens were inhibited completely at 800 ppm and the incidence of anthracnose and stem-end rot diseases reduced by 75.2% and 80.2%, respectively. The activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and glucanase had transiently increased in hexanal vapor treated banana by 5 to 7 days and declined thereafter. Postharvest treatment of banana with hexanal vapor resulted in phospholipase D inhibition and also resulted in cell wall thickening of the treated fruit, which impeded the penetration of the pathogenic spores. This was further confirmed by scanning electron micrographs. The defense-related protein intermediaries had increased in hexanal vapor treated banana fruit, which suggests induced resistance against C. gloeosporioides and L. theobromae, via., the phenylpropanoid pathway which plays a significant role in hindering the pathogen quiescence. Delayed ripening due to inhibition of phospholipase D enzyme, inhibition of mycelial growth and induced systemic resistance by defense enzymes collectively contributed to the postharvest disease reduction and extended shelf life of fruit.

Abscisic acid의 처리농도가 포도 '거봉'의 착색에 미치는 영향 (Influence of Exogenous Abscisic Acid Concentration on the Coloration of 'Kyoho' Grapes.)

  • 한동현
    • 생명과학회지
    • /
    • 제15권2호
    • /
    • pp.293-297
    • /
    • 2005
  • 본 실험은 착색 불안정 때문에 재배적 어려움이 있는 '거봉'포도를 이용하여 변색기에 ABA를 농도별로 처리하여 봄으로써 착색증진을 위한 최적의 처리 농도를 구명하고자 실시하여 다음과 같은 결과를 얻었다. ABA의 처리 농도에 따라 과방중량과 과립중량은 약간 증가하는 경향을 나타내었으나, 유의차가 인정되지 않았다. 가용성 고형물과 적정산 함량 역시 생장기간 내내 처리구간에 유의차가 인정되지 않았다. PAL 효소의 활성은 각 처리구 공히 처리후 급속히 증가 하다가 감소하는 경향을 보였는데, ABA 처리농도가 높으면 높을수록 증감의 폭은 더욱 커졌다. 또한 처리농도가 높을수록 최종수확기에 가서도 다른 처리구에 비해 높은 수준을 유지하였다. 안토시아닌 함량은 모든 처리구에서 생육기간 동안 계속 증가하는 경향을 보였고, ABA 처리농도가 높아짐에 따라 더 높은 함량을 나타내었는데, 특히 ABA 1000 mg/L 처리구는 최종수확기에 무처리구에 비해 2.5배 이상의 함량을 나타내었다. 과피의 전페놀 함량은 안토시아닌 함량과 마찬가지로 모든 처리구에서 생육기간 내내 증가하는 경향을 나타내었고, ABA의 처리농도가 높아짐에 따라 더 높은 함량을 나타내었다. 가용성당 함량은 과당과 포도당만이 검출되었으며, 자당은 전혀 검출되지 않았다. 과당과 포도당 함량 역시 변색기 이후 계속 증가하는 경향을 보였으며, 처리구간에 큰 차이는 보이지 않았다.

Genomics Reveals Traces of Fungal Phenylpropanoid-flavonoid Metabolic Pathway in the Filamentous Fungus Aspergillus oryzae

  • Juvvadi Praveen Rao;Seshime Yasuyo;Kitamoto Katsuhiko
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.475-486
    • /
    • 2005
  • Fungal secondary metabolites constitute a wide variety of compounds which either playa vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to playa vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.

Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng

  • Zhou, Ying;Yang, Zhenming;Gao, Lingling;Liu, Wen;Liu, Rongkun;Zhao, Junting;You, Jiangfeng
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.307-315
    • /
    • 2017
  • Background: Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). Methods: To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Results: Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of $H_2O_2$ and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of $\text\tiny L$-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione-S-transferase activity remained constant. Conclusion: Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.

Induction of Systemic Resistance against Bacterial Leaf Streak Disease and Growth Promotion in Rice Plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8

  • Hata, Erneeza Mohd;Yusof, Mohd Termizi;Zulperi, Dzarifah
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.173-181
    • /
    • 2021
  • The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 µmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.