Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2019.0072

Hexanal Vapor Induced Resistance against Major Postharvest Pathogens of Banana (Musa acuminata L.)  

Dhakshinamoorthy, Durgadevi (Department of Nano Science & Technology, Tamil Nadu Agricultural University)
Sundaresan, Srivignesh (Department of Nano Science & Technology, Tamil Nadu Agricultural University)
Iyadurai, Arumukapravin (Department of Nano Science & Technology, Tamil Nadu Agricultural University)
Subramanian, Kizhaeral Sevathapandian (Department of Nano Science & Technology, Tamil Nadu Agricultural University)
Janavi, Gnanaguru Janaki (Department of Nano Science & Technology, Tamil Nadu Agricultural University)
Paliyath, Gopinathan (Plant Agriculture, University of Guelph)
Subramanian, Jayasankar (Plant Agriculture, University of Guelph)
Publication Information
The Plant Pathology Journal / v.36, no.2, 2020 , pp. 133-147 More about this Journal
Abstract
Hexanal, a C-6 aldehyde has been implicated to have antimicrobial properties. Hence, this study was conducted to determine the antifungal activities of hexanal vapor against major postharvest pathogens of banana viz., Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured in vitro and exposed to hexanal vapor at 600, 800, 1,000 and 1,200 ppm. Mycelial growth of both fungal pathogens were inhibited completely at 800 ppm and the incidence of anthracnose and stem-end rot diseases reduced by 75.2% and 80.2%, respectively. The activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and glucanase had transiently increased in hexanal vapor treated banana by 5 to 7 days and declined thereafter. Postharvest treatment of banana with hexanal vapor resulted in phospholipase D inhibition and also resulted in cell wall thickening of the treated fruit, which impeded the penetration of the pathogenic spores. This was further confirmed by scanning electron micrographs. The defense-related protein intermediaries had increased in hexanal vapor treated banana fruit, which suggests induced resistance against C. gloeosporioides and L. theobromae, via., the phenylpropanoid pathway which plays a significant role in hindering the pathogen quiescence. Delayed ripening due to inhibition of phospholipase D enzyme, inhibition of mycelial growth and induced systemic resistance by defense enzymes collectively contributed to the postharvest disease reduction and extended shelf life of fruit.
Keywords
banana; defense proteins; hexanal; induced resistance; postharvest diseases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baez-Sanudo, M., Siller-Cepeda, J., Muy-Rangel, D. and Heredia, J. B. 2009. Extending the shelf-life of bananas with 1-methylcyclopropene and a chitosan-based edible coating. J. Sci. Food Agric. 89:2343-2349.   DOI
2 Baggio, J. S., Lourenco, S. D. A. and Amorim, L. 2014. Eradicant and curative treatments of hexanal against peach brown rot. Sci. Agric. 71:72-76.   DOI
3 Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L. and Weisskopf, L. 2014. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J. 80:758-771.   DOI
4 Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C. and Preston, C. A. 2006. Volatile signaling in plant-plant interactions:"talking trees" in the genomics era. Science 311:812-815.   DOI
5 Barber, M. S. and Mitchell, H. J. 1997. Regulation of phenylpropanoid metabolism in relation to lignin biosynthesis in plants. Int. Rev. Cytol. 172:243-293.   DOI
6 Beffa, R. S., Hofer, R.-M., Thomas, M. and Meins, F. Jr. 1996. Decreased susceptibility to viral disease of ${\beta}$-1,3-glucanasedeficient plants generated by antisense transformation. Plant Cell. 8:1001-1011.   DOI
7 Boudhrioua, N., Giampaoli, P. and Bonazzi, C. 2003. Changes in aromatic components of banana during ripening and airdrying. LWT Food Sci. Technol. 36:633-642.   DOI
8 Bowles, D. J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873-907.   DOI
9 Caruso, F. L. and Ramsdell, D. C. 1995. Compendium of blueberry and cranberry diseases. American Phytopathological Society, St. Paul, MN, USA. 87 pp.
10 Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G. and Nicholson, R. L. 1984. Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol. Plant Pathol. 25:111-123.   DOI
11 Dixon, R. A., Paiva, N. L. and Bhattacharyya, M. K. 1995. Engineering disease resistance in plants: an overview. In: Molecular methods in plant pathology, eds. by R. P. Singh and U. S. Singh, pp. 249-270. CRC Press, Boca Raton, FL, USA.
12 Dobson, H. E. M. 2006. Relationship between floral fragrance composition and type of pollinator. In: Biology of floral scent, eds. by N. Dudareva and E. Pichersky, pp. 147-198. CRC Press, Boca Raton, FL, USA.
13 El Kayal, W., El-Sharkawy, I., Dowling, C., Paliyath, G., Sullivan, J. A. and Subramanian, J. 2017a. Effect of preharvest application of hexanal and growth regulators in enhancing shelf life and regulation of membrane-associated genes in strawberry. Can. J. Plant Sci. 97:1109-1120.
14 Ganeshamoorthi, P., Anand, T., Prakasam, V., Bharani, M., Ragupathi, N. and Samiyappan, R. 2008. Plant growth promoting rhizobacterial (PGPR) bioconsortia mediates induction of defense-related proteins against infection of root rot pathogen in mulberry plants. J. Plant Interact. 3:233-244.   DOI
15 El Kayal, W., Paliyath, G., Sullivan, J. A. and Subramanian, J. 2017b. Phospholipase D inhibition by hexanal is associated with calcium signal transduction events in raspberry. Hortic. Res. 4:17042.   DOI
16 Fallik, E., Archbold, D. D., Hamilton-Kemp, T. R., Clements, A. M., Collins, R. W. and Barth, M. M. 1998. (E)-2-hexenal can stimulate Botrytis cinerea growth in vitro and on strawberries in vivo during storage. J. Am. Soc. Hortic. Sci. 123:875-881.   DOI
17 Fan, L., Song, J., Beaudry, R. M. and Hildebrand, P. D. 2006. Effect of hexanal vapor on spore viability of Penicillium expansum, lesion development on whole apples and fruit volatile biosynthesis. J. Food Sci. 71:M105-M109.   DOI
18 Gill, P. P. S., Jawandha, S. K., Kaur, N., Singh, N. and Sangwan, A. 2015. Influence of LDPE packaging on post harvest quality of mango fruits during low temperature storage. Bioscan 10:1177-1180.
19 Hammerschmidt, R., Nuckles, E. M. and Kuc, J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20:73-82.   DOI
20 Heil, M. and Silva Bueno, J. C. 2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. U. S. A. 104:5467-5472.   DOI
21 Kasso, M. and Bekele, A. 2018. Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. J. Saudi Soc. Agric. Sci. 17:88-96.   DOI
22 Jincy, M., Djanaguiraman, M., Jeyakumar, P., Subramanian, K. S., Jayasankar, S. and Paliyath, G. 2017. Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Sci. Hortic. 218:316-325.   DOI
23 Johnston, P. R. and Jones, D. 1997. Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia 89:420-430.   DOI
24 Kanazawa, K. and Sakakibara, H. 2000. High content of dopamine, a strong antioxidant, in Cavendish banana. J. Agric. Food Chem. 48:844-848.   DOI
25 Khan, S. H., Aked, J. and Magan, N. 2001. Control of the anthracnose pathogen of banana (Colletotrichum musae) using antioxidants alone and in combination with thiabendazole or imazalil. Plant Pathol. 50:601-608.   DOI
26 Kumar, S. K., El Kayal, W., Sullivan, J. A., Paliyath, G. and Jayasankar, S. 2018. Pre-harvest application of hexanal formulation enhances shelf life and quality of 'Fantasia' nectarines by regulating membrane and cell wall catabolismassociated genes. Sci. Hortic. 229:117-124.   DOI
27 Lafuente, M. T., Zacarias, L., Martinez-Tellez, M. A., Sanchez-Ballesta, M. T. and Granell, A. 2003. Phenylalanine ammonia-lyase and ethylene in relation to chilling injury as affected by fruit age in citrus. Postharvest Biol. Technol. 29:308-317.
28 Lanciotti, R., Belletti, N., Patrignani, F., Gianotti, A., Gardini, F. and Guerzoni, M. E. 2003. Application of hexanal, E-2-hexenal, and hexyl acetate to improve the safety of fresh-sliced apples. J. Agric. Food Chem. 51:2958-2963.   DOI
29 Liu, S.-C., Lin, J.-T., Wang, C.-K., Chen, H.-Y. and Yang, D.-J. 2009. Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chem. 114:577-581.   DOI
30 Liu, H., Qiu, N., Ding, H. and Yao, R. 2008. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res. Int. 41:363-370.   DOI
31 Lopez-Fernandez, O., Rial-Otero, R., Gonzalez-Barreiro, C. and Simal-Gandara, J. 2012. Surveillance of fungicidal dithiocarbamate residues in fruits and vegetables. Food Chem. 134:366-374.   DOI
32 Ministry of Agriculture. 2015. Post harvest profile of banana:2015. Government of India, Ministry of Agriculture, Department of Agriculture & Cooperation, Directorate of Marketing & Inspection, Nagpur, India. 87 pp.
33 M'Piga, P., Belanger, R. R., Paulitz, T. C. and Benhamou, N. 1997. Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol. Mol. Plant Pathol. 50:301-320.   DOI
34 Ministry of Agriculture & Farmers' Welfare. 2018. Horticultural statistics at a glance 2018. Government of India, Ministry of Agriculture & Farmers' Welfare, Department of Agriculture, Cooperation & Farmers' Welfare, Horticulture Statistics Division, New Delhi, India. 458 pp.
35 Mohan, C., Sridharan, S., Subramanian, K. S., Natarajan, N. and Nakkeeran, S. 2017. Effect of nanoemulsion of hexanal on honey bees (Hymenoptera; Apidae). J. Entomol. Zool. Stud. 5:1415-1418.
36 Mohapatra, D., Mishra, S. and Sutar, N. 2010. Banana and its byproduct utilisation: an overview. J. Sci. Ind. Res. 69:323-329.
37 Myung, K., Hamilton-Kemp, T. R. and Archbold, D. D. 2007. Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes. J. Agric. Food Chem. 55:2182-2188.   DOI
38 Neri, F., Mari, M. and Brigati, S. 2006. Control of Penicillium expansum by plant volatile compounds. Plant Pathol. 55:100-105.   DOI
39 Pan, Q., Te, Y. S. and Kuc, J. 1991. A technique for detection of chitinase, ${\beta}$-1,3-glucanase, and protein patterns after single separation using polyacrylamide gel electrophoresis or isoelectricfocusing. Phytopathology 81:970-974.   DOI
40 Paliyath, G. and Droillard, M. J. 1992. The mechanisms of membrane deterioration and disassembly during senescence. Plant Physiol. Biochem. 30:789-812.
41 Payasi, A., Mishra, N. N., Chaves, A. L. S. and Singh, R. 2009. Biochemistry of fruit softening: an overview. Physiol. Mol. Biol. Plants 15:103-113.   DOI
42 Sangeetha, G., Anandan, A. and Rani, S. U. 2012. Morphological and molecular characterisation of Lasiodiplodia theobromae from various banana cultivars causing crown rot disease in fruits. Arch. Phytopathol. Plant Prot. 45:475-486.   DOI
43 Prabakar, K., Raguchander, T., Parthiban, V. K., Muthulakshmi, P. and Prakasam, V. 2005. Post harvest fungal spoilage in mango at different levels marketing. Madras Agric. J. 92:42-48.
44 Rangaswami, G. and Mahadevan, A. 1999. Diseases of crop plants in India. 4th ed. Prentice-Hall of India Pvt. Ltd., New Delhi, India. 548 pp.
45 Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.   DOI
46 Seethapathy, P., Gurudevan, T., Subramanian, K. S. and Kuppusamy, P. 2016. Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. J. Plant Interact. 11:158-166.   DOI
47 Sholberg, P. and Randall, P. 2005. Hexanal vapor for postharvest decay control and aroma production in stored pome fruit. Phytopathology 95:S96.
48 Sharifi, R. and Ryu, C. M. 2018. Sniffing bacterial volatile compounds for healthier plants. Curr. Opin. Plant Biol. 44:88-97.   DOI
49 Sharma, M., Jacob, J. K., Subramanian, J. and Paliyath, G. 2010. Hexanal and 1-MCP treatments for enhancing the shelf life and quality of sweet cherry (Prunus avium L.). Sci. Hortic. 125:239-247.   DOI
50 Sholberg, P. 2009. Control of postharvest decay by fumigation with acetic acid or plant volatile compounds. Fresh Produce 3(Spec 1):80-86.
51 Sholberg, P. L. and Randall, P. 2007. Fumigation of stored pome fruit with hexanal reduces blue and gray mold decay. Hort-Science 42:611-616.   DOI
52 Song, J., Hildebrand, P. D., Fan, L., Forney, C. F., Renderos, W. E., Campbell-Palmer, L. and Doucette, C. 2007. Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay. J. Food Sci. 72:M108-M112.   DOI
53 Sivakumar, D., Wijeratnam, R. S. W., Marikar, F. M. M. T., Abeyesekere, M. and Wijesundera, R. L. C. 2001. Antagonistic effect of Trichoderma harzianum on post harvest pathogens of rambutans. Acta Hortic. 553:389-392.   DOI
54 Smart, M. G. 1991. The plant cell wall as a barrier to fungal invasion. In: The fungal spore and disease initiation in plants and animals, eds. by G. T. Cole and H. C. Hoch, pp. 47-66. Springer-Verlag, Boston, MA, USA.
55 Song, J., Fan, L., Forney, C., Campbell-Palmer, L. and Fillmore, S. 2010. Effect of hexanal vapor to control postharvest decay and extend shelf-life of highbush blueberry fruit during controlled atmosphere storage. Can. J. Plant Sci. 90:359-366.   DOI
56 Thavong, P., Archbold, D. D., Pankasemsuk, T. and Koslanund, R. 2011. Hexanal vapours suppress spore germination, mycelial growth, and fungal-derived cell wall degrading enzymes of postharvest pathogens of longan fruit. Chiang Mai J. Sci. 38:139-150.
57 Song, J., Leepipattanawit, R., Deng, W. and Beaudry, R. M. 1996. Hexanal vapor is a natural, metabolizable fungicide: inhibition of fungal activity and enhancement of aroma biosynthesis in apple slices. J. Am. Soc. Hortic. Sci. 121:937-942.   DOI
58 Stoytcheva, M. 2011. Pesticides in the modern world: trends in pesticides analysis. InTech, Rijeka, Croatia. 514 pp.
59 Thakker, J. N., Patel, S. and Dhandhukia, P. C. 2013. Induction of defense-related enzymes in banana plants: effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. cubense. ISRN Biotechnol. 2013:601303.   DOI
60 Tiwari, K. and Paliyath, G. 2011. Microarray analysis of ripeningregulated gene expression and its modulation by 1-MCP and hexanal. Plant Physiol. Biochem. 49:329-340.   DOI
61 Utto, W., Mawson, J. A. and Bronlund, J. E. 2008. Hexanal reduces infection of tomatoes by Botrytis cinerea whilst maintaining quality. Postharvest Biol. Technol. 47:434-437.   DOI
62 Venkatachalam, K., Muthuvel, I., Sundaresan, S., Subramanian, K. S., Janaki, J. G., Sullivan, J. A., Paliyath, G. and Subramanian, J. 2018. Post-harvest dip of enhanced freshness formulation to extend the shelf life of banana (Musa acuminata cv. Grand Naine) in India. Trop. Agric. 95:1-13.
63 Wang, Y., Tang, M., Hao, P., Yang, Z., Zhu, L. and He, G. 2008. Penetration into rice tissues by brown planthopper and fine structure of the salivary sheaths. Entomol. Exp. Appl. 129:295-307.   DOI
64 Anand, T., Chandrasekaran, A., Kuttalam, S., Raguchander, T., Prakasam, V. and Samiyappan, R. 2007. Association of some plant defense enzyme activities with systemic resistance to early leaf blight and leaf spot induced in tomato plants by azoxystrobin and Pseudomonas fluorescens. J. Plant Interact. 2:233-244.   DOI
65 Wilson, C. L., Franklin, J. D. and Otto, B. E. 1987. Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis. 71:316-319.   DOI
66 Yuan, H., Chen, L., Paliyath, G., Sullivan, A. and Murr, D. P. 2005. Characterization of microsomal and mitochondrial phospholipase D activities and cloning of a phospholipase D alpha cDNA from strawberry fruits. Plant Physiol. Biochem. 43:535-547.   DOI
67 Abayasekara, C. L., Adikaram, N. K. B., Wanigasekara, U. W. N. P. and Bandara, B. M. R. 2013. Phyllosticta musarum infection-induced defences suppress anthracnose disease caused by Colletotrichum musae in banana fruit cv 'Embul'. Plant Pathol. J. 29:77-86.   DOI
68 Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, USA. 922 pp.
69 Alkarkhi, A. F. M., Ramli, S. B., Yong, Y. S. and Easa, A. M. 2011. Comparing physicochemical properties of banana pulp and peel flours prepared from green and ripe fruits. Food Chem. 129:312-318.   DOI
70 Anusuya, P., Nagaraj, R., Janavi, G. J., Subramanian, K. S., Paliyath, G. and Subramanian, J. 2016. Pre-harvest sprays of hexanal formulation for extending retention and shelf-life of mango (Mangifera indica L.) fruits. Sci. Hortic. 211:231-240.   DOI
71 Arroyo, F. T., Moreno, J., Daza, P., Boianova, L. and Romero, F. 2007. Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum. J. Agric. Food Chem. 55:5701-5707.   DOI