Antiviral Activity of the Exopolysaccharide Produced by Serratia sp. Strain Gsm01 Against Cucumber Mosaic Virus

  • Ipper, Nagesh S. (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Cho, Sae-Youll (Division of Metabolism, Endocrinology and Diabetes, University of Michigan) ;
  • Lee, Seon-Hwa (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Cho, Jun-Mo (Pioneer Co. Ltd., Kangwon National University) ;
  • Hur, Jang-Hyun (Division of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Lim, Chun-Keun (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and Life Sciences, Kangwon National University)
  • Published : 2008.01.31

Abstract

The potential of the exopolysaccharide (EPS) from a Serratia sp. strain Gsm01 as an antiviral agent against a yellow strain of Cucumber mosaic virus (CMV-Y) was evaluated in tobacco plants (Nicotiana tabacum cv. Xanthi-nc). The spray treatment of plants using an EPS preparation, 72h before CMV-Y inoculation, protected them against symptom appearance. Fifteen days after challenge inoculation with CMV-Y, 33.33% of plants showed mosaic symptoms in EPS-treated plants compared with 100% in the control plants. The EPS-treated plants, which showed mosaic symptoms, appeared three days later than the controls. The enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of the leaves of the protected plants revealed that the EPS treatment affected virus accumulation in those plants. Analysis of phenylalanine ammonia lyase, peroxidase, and phenols in protected plants revealed enhanced accumulation of these substances. The pathogenesis-related (PR) genes expression represented by PR-lb was increased in EPS-treated plants. This is the first report of a systemic induction of protection triggered by EPS produced by Serratia sp. against CMV-Y.

Keywords

References

  1. Avdiushko, S. K., X. S. Ye, and J. Ku. 1993. Detection of several enzymatic activities in leaf prints cucumber plant. Physiol. Mol. Plant Pathol. 42: 441-454 https://doi.org/10.1006/pmpp.1993.1033
  2. Bergstrom, G. C., M. C. Johnson, and J. Kuæ. 1982. Effects of local infection of cucumber by Colletotrichum lagenarium, Pseudomonas lachrymans, or Tobacco necrosis virus on systemic resistance to Cucumber mosaic virus. Phytopathology 72: 922-925 https://doi.org/10.1094/Phyto-72-922
  3. Binutu, O. A. and G. A. Cordell. 2000. Gallic acid derivative from Mezoneuron benthamianum leaves. Pharmacol. Biol. 38: 284-286 https://doi.org/10.1076/1388-0209(200009)38:4;1-A;FT284
  4. Bruce, R. J. and C. A. West. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragment in suspension culture caster bean. Plant Physiol. 91: 889-897 https://doi.org/10.1104/pp.91.3.889
  5. Clark, M. F. and A. N. Adams. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34: 475-483 https://doi.org/10.1099/0022-1317-34-3-475
  6. Daayf, F., R. Bell-Rhid, and R. R. Belanger. 1997. Methyl ester of p-coumaric acid: A phytoalexin-like compound from long English cucumber leaves. J. Chem. Ecol. 23: 1517-1526 https://doi.org/10.1023/B:JOEC.0000006419.22408.65
  7. DeMeyer G., K. Capieau, K. Audenaert, A. Buchala, J. P. Métraux, and M. Höfte. 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant Microbe Interact. 12: 450-458 https://doi.org/10.1094/MPMI.1999.12.5.450
  8. Doubrava, N. S., R. A. Dean, and J. Kuæ. 1988. Induction of systemic resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves. Physiol. Mol. Plant Pathol. 33: 69-79 https://doi.org/10.1016/0885-5765(88)90044-6
  9. Ghandi, H. A. 2000. Benzo-(1,2,3)-thiodiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus. Crop Protect. 19: 401-405 https://doi.org/10.1016/S0261-2194(00)00031-4
  10. Graham, T. L., L. Sequeria, and T. S. R. Huang. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34: 424-432
  11. Guzzo, S. D., E. E. Bach, E. M. F. Martins, and W. B. C. Moraes. 1993. Crude exopolysaccharides (EPS) from Xanthomonas campestris pv. manihotis, X. campestris pv. campestris, and commercial xanthan gum as inducers of protection in coffee plants against Hemileia vastatrix. J. Phytopathol. 139: 119-128 https://doi.org/10.1111/j.1439-0434.1993.tb01408.x
  12. Ipper, N. S., S. H. Lee, J. K. Suk, A. Shrestha, D. U. Seo, D. H. Park, J. M. Cho, D. S. Park, J. H. Hur, and C. K. Lim. 2006. Isolation and evaluation of an antiviral producing Serratia spp. strain Gsm01 against Cucumber mosaic virus in Korea. Kor. J. Pest. Sci. 10: 344-350
  13. Kang, S. H., H. S. Cho, H. Cheong, C. M. Ryu, J. F. Kim, and S. H. Park. 2007. Two bacterial endophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annum L). J. Microbiol. Biotechnol. 17: 96-103
  14. Keane, P. J., A. Kerr, and P. B. New. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23: 585-595 https://doi.org/10.1071/BI9700585
  15. Lavania, M., P. S. Chuhan, S. V. S. Chauhan, H. B. Singh, and C. S. Nautiyal. 2006. Induction of plant defense enzymes and phenolics by treatment with plant growth promoting rhizobacteria Serratia marcescens NBRI1213. Curr. Microbiol. 52: 363-368 https://doi.org/10.1007/s00284-005-5578-2
  16. Lee, H. J., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. Hwangbo, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicum annum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
  17. Leeman, M., J. A. Vanpelt, F. M. Denouden, M. Heinsbroek, P. A. H. M. Bakker, and B. Schippers. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021-1027 https://doi.org/10.1094/Phyto-85-1021
  18. Leeman, M., F. M. den Ouden, J. A. van Pelt, F. P. M. Dirkx, H. Steijl, P. A. H. M. Bakker, and B. Schippers. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of raddish by Pseudomonas fluorescens. Phytopathology 86: 149-155 https://doi.org/10.1094/Phyto-86-149
  19. Liu, L., J. W. Kloepper, and S. Tuzun. 1995. Induction of resistance in cucumber by plant growth-promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85: 1064-1068 https://doi.org/10.1094/Phyto-85-1064
  20. Maurhofer, M., C. Hase, P. Meuwly, J. P. Metraux, and G. Défago. 1994. Induction of systemic resistance of tobacco to Tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and pyroverdine production. Phytopathology 84: 139-146 https://doi.org/10.1094/Phyto-84-139
  21. Maurhofer, M., C. Reimmann, P. Schmidli-Sacherer, S. Heeb, D. Haas, and G. Defago. 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against Tobacco necrosis virus. Phytopathology 88: 678-684 https://doi.org/10.1094/PHYTO.1998.88.7.678
  22. Muralidharan, J. and S. Jaychandran. 2003. Physicochemical analysis of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem. 38: 841-847 https://doi.org/10.1016/S0032-9592(02)00021-3
  23. Murphy, J. F., G. W. Zehnder, D. J. Schuster, E. J. Sikora, J. E. Polston, and J. W. Kloepper. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Dis. 84: 779-784 https://doi.org/10.1094/PDIS.2000.84.7.779
  24. Murphy, J. F., M. S. Reddy, C. M. Ryu, J. W. Kloepper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  25. Nei, X. 2006. Salicylic acid suppresses Potato virus Y isolate N:O-induced symptoms in tobacco plants. Phytopathology 96: 255-263 https://doi.org/10.1094/PHYTO-96-0255
  26. Nei, X. and R. P. Singh. 2001. Differential accumulation of Potato virus A and expression of pathogenesis-related genes in resistance potato cv. Shepody upon graft inoculation. Phytopathology 91: 197-203 https://doi.org/10.1094/PHYTO.2001.91.2.197
  27. Newman, M. A., M. J. Daniels, and J. M. Dow. 1995. Lipopolysacharide from Xanthomonas campestris induces defense related gene expression in Brassica campestris. Mol. Plant Microbe Interact. 8: 778-780 https://doi.org/10.1094/MPMI-8-0778
  28. Press, C. M., M. Wilson, S. Tuzun, and J. W. Kloepper. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant Microbe Interact. 10: 761-768 https://doi.org/10.1094/MPMI.1997.10.6.761
  29. Raupach, G. S., J. F. Murphy, and J. W. Kloepper. 1995. Biological control of Cucumber mosaic cucumovirus in Cucumis sativus L., by PGPR-mediated induced systemic resistance. (Abstr.) Phytopathology 85: 1167
  30. Ryu, C. M., J. F. Murphy, K. S. Mysore, and J. W. Kloepper. 2004. Plant growth promoting rhizobacteria systemically protect Arabidopsis thalina against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic aciddependent signaling pathway. Plant J. 39: 381-392 https://doi.org/10.1111/j.1365-313X.2004.02142.x
  31. Ryu, C. M., J. F. Murphy, M. S. Reddy, and J. W. Kloepper. 2007. A two strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thalina. J. Microbiol. Biotechnol. 17: 280-286
  32. Shetty, N. P., B. K. Kristensen, M. A. Newman, K. Moller, P. L. Gregersen, and H. J. L. Jogersen. 2006. Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol. Mol. Plant Pathol. 62: 333-346 https://doi.org/10.1016/S0885-5765(03)00079-1
  33. Someya, N., M. Nakajima, K. Watanabe, T. Hibi, and K. Akutsu. 2004. Potential of Serratia marcescens strain B2 for biological control of rice sheath blight. Biocontrol Sci. Technol. 15: 105-109 https://doi.org/10.1080/09583150400016092
  34. Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  35. Wei, G., J. W. Kloepper, and S. Tuzun. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86: 221-224 https://doi.org/10.1094/Phyto-86-221
  36. Zehnder, G. W., C. Yao, J. F. Murphy, E. R. Sikora, and J. W. Kloepper. 2000. Induction of resistance in tomato against Cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biocontrol 45: 127-137 https://doi.org/10.1023/A:1009923702103
  37. Zieslin, N. and R. Ben-Zaken. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol. Biochem. 31: 333-339