Browse > Article
http://dx.doi.org/10.7745/KJSSF.2016.49.2.168

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review  

Lim, Jung-Eun (Division of Soil & Fertilizer, National Academy of Agricultural Science)
Cho, Min-Ji (Division of Soil & Fertilizer, National Academy of Agricultural Science)
Yun, Hye-Jin (Division of Soil & Fertilizer, National Academy of Agricultural Science)
Ha, Sang-Keun (Division of Soil & Fertilizer, National Academy of Agricultural Science)
Lee, Deog-Bae (Division of Soil & Fertilizer, National Academy of Agricultural Science)
Sung, Jwa-Kyung (Division of Soil & Fertilizer, National Academy of Agricultural Science)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.49, no.2, 2016 , pp. 168-180 More about this Journal
Abstract
Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.
Keywords
Antioxidants; Ascorbic Acid; Carotenoids; Glucosinolates; Phenolics; Phytochemicals;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Adam, A., V. Crespy, M.-A. Levrat-Verny, F. Leenhardt, M. Leuillet, C. Demigne, and C. Remesy. 2002. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 132:1962-1968.   DOI
2 Akerstrom, A., A. Forsum, K. Rumpunen, A. Jaderlund, and U. Bang. 2009. Effects of sampling time and nitrogen fertilization on anthocyanidin levels in Vaccinium myrtillus fruit. J. Agric. Food Chem. 57:3340-3345.   DOI
3 Anttonen, M.J., K.I. Hoppula, R. Nestby, M.J. Verheul, and R.O. Karjalainen. 2006. Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing environment, and genotype on the contents of selected phenolics in strawberry (Fragaria X ananassa Duch.) fruits. J. Agric. Food Chem. 54:2614-2620.   DOI
4 Benard, C., H. Gautier, F. Bourgaud, D. Grasselly, B. Navez, C. Caris-Veyrat, M. Weiss, and M. Genard. 2009. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 57:4112-4123.   DOI
5 Boo, H.O., H.H. Lee, J.W. Lee, S.J. Hwang, and S.U. Park. 2009. Different of total phenolics and flavonoids, radical scavenging activities and nitrite scavenging effects of Momordica charantia L. according to cultivars. Korean J. Medicinal Crop Sci. 17:15-20.
6 Bryant, J.P., F.S. Chapin, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 40:357-368.   DOI
7 Chenard, C.H., D.A. Kopsell, and D.E. Kopsell. 2005. Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. J. Plant Nutr. 28:285-297.   DOI
8 Choi, S.H., D.H. Kim, and D.S. Kim. 2011. Comparison of ascorbic acid, lycopene, ${\beta}$-carotene and ${\alpha}$-carotene contents in processed tomato products, tomato cultivar and part. Korean J. Cul. R. 17:263-272.
9 Coria-Cayupan, Y.S., M.I.S. de Pinto, and M.A. Nazareno. 2009. Vatiations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J. Agric. Food Chem. 57:10122-10129.   DOI
10 Dai, J. and R.J. Mumper. 2010. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 15:7313-7352.   DOI
11 Duthie, G.G., S.J. Duthie, and J.A.M. Kyle. 2000. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr. Res. Rev. 13:79-106.   DOI
12 Erba, D., M.C. Casiraghi, A. Ribas-Agusti, R. Caceres, O. Marfa, and M. Castellari. 2013. Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J. Food Comp. Anal. 31:245-251.   DOI
13 Fernandez-Escobar, R., G. Beltran, M.A. Sanchez-Zamora, J. Garcia-Novelo, M.P. Aguilera, and M. Uceda. 2006. Olive oil quality decreases with nitrogen over-fertilization. Hortscience. 41:215-219.
14 Galieni, A., C.D. Mattia, M.D. Gregorio, S. Speca, D. Mastrocola, M. Pisante, and F. Stagnari. 2015. Effects of nutrient deficiency and abiotic environmental stresses onyield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci. Hortic. 187:93-101.   DOI
15 Hallmann, E. 2012. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 92:2840-2848.   DOI
16 Han, S.J., S.W. Kwon, S.H. Chu, and S.N. Ryu. 2012. A new rice variety 'Keunnunjami', with high concentrations of cyanidin 3-glucoside and giant embryo. Kor. J. Breed. Sci. 44:185-189.
17 Kim, D.Y., S.K. Kim, C. Chen, S. Kim, W.B. Chae, J.H. Kwak, S. Park, S.R. Cheong, and M.K. Yoon. 2013. Variation of anthocyanin content and estimation of anthocyanin content from colorimeter among strawberry accessions. Kor. J. Breed. Sci. 45:339-345.   DOI
18 Hilbert, G., J.P. Soyer, C. Molot, J. Giraudon, S. Milin, and J.P. Gaudillere. 2003. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis. 42:69-76.
19 Hochmuth, G.J., J.K. Brecht, and M.J. Bassett. 1999. Nitrogen fertilization to maximize carrot yield and quality on a sandy soil. Hortscience. 34:641-645.
20 Jang, S.W., J.N. Lee, J.S. Kim, M.H. Cheon, M.H. Seo, M.G. Song, M.J. Um, H.D. Kim, and S.B. Ko. 2015. Breeding of anthocyanin expression and high yield of lettuce 'Misun' in cool season. Kor. J. Breed. Sci. 47:154-158.   DOI
21 Kim, H.R. and J.B. Ahn. 2014. Analysis of free amino acids and polyphenol compounds from lycopene variety of cherry tomatoes. Korean J. Cul. Res. 20:37-49.
22 Kim, H.B., S.L. Kim, Y.S. Seok, S.H. Lee, Y.Y. Jo, H.Y. Kweon, and K.G. Lee. 2014. Quantitative analysis of rutin with mulberry leaves (I). J. Seric. Entomol. Sci. 52:52-58.
23 Kim, H.K., J.H. Chun, and S.J. Kim. 2015. Method development and analysis of carotenoid compositions in various tomatoes. Korean J. Environ. Agric. 34:196-203.   DOI
24 Kopsell, D.A., D.E. Kopsell, and J. Curran-Celentano. 2007a. Carotenoid pigments in kale are influenced by nitrogen concentration and form. J. Sci. Food Agric. 87:900-907.   DOI
25 Lee, W.M., M.J. Kwon, L.S. Song, S. Kim, H.J. Lee, E.Y. Yang, H.S. Choi, Y.C. Huh, D.K. Park, and M.K. Yoon. 2014a. Screening of lycopene-rich germplasms using microplate method in watermelon (Citrullus Lanatus (thunb.) Matsum. & Nakai). Kor. J. Breed. Sci. 46:37-43.   DOI
26 Kopsell, D.A., T.C. Barickman, C.E. Sams, and J.S. McElroy. 2007b. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 55:10628-10634.   DOI
27 Kumar, D. and S.I. Rizvi. 2012. Significance of vitamin C in human health and disease. Ann. Phytomed. 1:9-13.
28 Lee, J.G., J.H. Kwak, Y.C. Um, S.G. Lee, Y.A. Jang, and C.S. Choi. 2012. Variation of glucosinolate contents among domestic broccoli (Brassica oleracea L. var. italica) accessions. Kor. J. Hort. Sci. Technol. 30:743-750.
29 Lee, M.J., Y.K. Kim, J.C. Park, M.J. Kim, J.N. Hyun, J.S. Choi, and K.H. Park. 2014b. Hull-less waxy barley (Hordeum vulgare L.) cultivar 'Boseokchal' with high anthocyanin content and purple lemma. Kor. J. Breed. Sci. 46:456-462.   DOI
30 Mogren, L.M., M.E. Olsson, and U.E. Gertsson. 2007. Quercetin content in stored onions (Allium cepa L.): effects of storage conditions, cultivar, lifting time and nitrogen fertiliser level. J. Sci. Food Agric. 87:1595-1602.   DOI
31 Moor, U., P. Poldma, T. Tonutare, K. Karp, M. Starast, and E. Vool. 2009. Effect of phosphite ferilization on growth, yield and fruit composition of strawberries. Sci. Hortic. 119:264-269.   DOI
32 Mozafar, A. 1993. Nitrogen fertilizers and the amount of vitamin in plants: A review. J. Plant Nutr. 16:2479-2506.   DOI
33 Oloyede, F.M., O.C. Adebooye, and E.M. Obuotor. 2014. Planting date and fertilizer affect antioxidants in pumpkin fruit. Sci. Hortic. 168:46-50.   DOI
34 Mozafar, A. 1996. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method. Plant Food Hum Nutr. 49:155-162.   DOI
35 Nguyen, P.M. and E.D. Niemeyer. 2008. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). J. Agric. Food Chem. 56:8685-8691.   DOI
36 Oh, S.D., S.Y. Park, S.M. Lee, K. Lee, S.I. Sohn, S.K. Park, and T.H. Ryu. 2015. Molecular biological characteristics and biosafety assessment for ${\beta}$-carotene biofortified transgenic rice. Kor. J. Breed. Sci. 47:29-38.   DOI
37 Omirou, M.D., K.K. Papadopoulou, I. Papastylianou, M. Constantinou, D.G. Karpouzas, I. Asimakopoulos, and C. Ehaliotis. 2009. Impact of nitrogen and sulfur ferilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J. Agric. Food Chem. 57:9408-9417.   DOI
38 Qin, Y., S.J. Kweon, Y.S. Chung, S.H. Ha, K.S. Shin, M.H. Lim, T.R. Kwon, H.S. Cho, S.K. Park, and H.J. Woo. 2015. Selection of ${\beta}$-carotene enhanced transgenic soybean containing single-copy transgene and analysis of integration sites. Kor. J. Breed. Sci. 47:111-117.   DOI
39 Reif, C., E. Arrigoni, R. Neuweiler, D. Baumgartner, L. Nystrom, and R.F. Hurrell. 2012. Effects of sulfur and nitrogen fertilization on the content of nutritionally relevant carotenoids in spinach (Spinacia oleracea). J. Agric. Food Chem. 60:5819-5824.   DOI
40 Rosen, C.J., V.A. Fritz, G.M. Gardner, S.S. Hecht, S.G. Carmella, and P.M. Kenney. 2005. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. Hort. Science. 40:1493-1498.
41 Shin, J.H., H.W. Kim, M.K. Lee, G.H. Jang, S.H. Lee, H.H. Jang, Y.J. Hwang, K.Y. Park, B.H. Song, and J.B. Kim. 2015. Effect of thermal treatments on flavonoid contents in domestic soybeans. Korean J. Environ. Agric. 34:105-110.   DOI
42 Simonne, A.H., J.M. Fuzere, E. Simonne, R.C. Hochmuth, and M.R. Marshall. 2007. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 30:927-935.   DOI
43 Singh, D.P., J. Beloy, J.K. McInerney, and L. Day. 2012. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 132: 1161-1170.   DOI
44 Sinkovic, L., L. Demsar, D. Znidarcic, R. Vidrih, J. Hribar, and D. Treutter. 2015. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chem. 166:507-513.   DOI
45 Soubeyrand, E., C. Basteau, G. Hillbert, C. van Leeuwen, S. Delrot, and E. Gomes. 2014. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry. 103:38-49.   DOI
46 Stefanelli, D., I. Goodwin, and R. Jones. 2010. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 43:1833-1843.   DOI
47 Stumpf, B., F. Yan, and B. Honermeier. 2015. Nitrogen ferilization and maturity influence the phenolic concentration of wheat grain (Triticum aestivum). J. Plant Nutr. Soil Sci. 178:118-125.   DOI
48 Treutter, D. 2010. Managing phenol contents in crop plants by phytochemical farming and breeding - Visions and constraints. Int. J. Mol. Sci. 11:807-857.   DOI
49 Tavarini, S., C. Sgherri, A.M. Ranieri, and L.G. Angelini. 2015. Effect of nitrogen fertilization and harvest time on steviol glycosides, flavonoid composition, and antioxidant properties in Stevia rebaudiana Bertoni. J. Agric. Food Chem. 63:7041-7050.   DOI
50 Toor, R.K., G.P. Savage, and A. Heeb. 2006. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Comp. Anal. 19:20-27.   DOI
51 Verma, S., A. Sharma, R. Kumar, C. Kaur, A. Arora, R. Shah, and L. Nain. 2015. Improvement of antioxidant and defense properties of tomato (var. Pusa Rohini) by application of bioaugmented compost. Saudi J. Biol. Sci. 22:256-264.   DOI
52 Xu, C.J., R.F. Guo, H.Z. Yan, J. Yuan, B. Sun, G.F. Yuan, and Q.M. Wang. 2010. Effect of nitrogen fertilization on ascorbic acid, glucoraphanin content and quinone reductase activity in broccoli floret and stem. J. Food Agric. Environ. 8:179-184.