Browse > Article

Genomics Reveals Traces of Fungal Phenylpropanoid-flavonoid Metabolic Pathway in the Filamentous Fungus Aspergillus oryzae  

Juvvadi Praveen Rao (Department of Biotechnology, The University of Tokyo)
Seshime Yasuyo (Department of Biotechnology, The University of Tokyo)
Kitamoto Katsuhiko (Department of Biotechnology, The University of Tokyo)
Publication Information
Journal of Microbiology / v.43, no.6, 2005 , pp. 475-486 More about this Journal
Abstract
Fungal secondary metabolites constitute a wide variety of compounds which either playa vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to playa vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.
Keywords
Aspergillus oryzae; chalcone synthase; flavonoids; fungal secondary metabolism; phenylpropanoids; type III polyketide synthase;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Adrio, J.L. and A.L. Demain. 2003. Fungal biotechnology. Int. Microbiol. 6, 191-199   DOI   ScienceOn
2 Ferrer, J.L., J.M. Jez, M.E. Bowman, R.A. Dixon, and J.P. Noel. 1999. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775-784   DOI   ScienceOn
3 Jensen, K.A., K.M.C. Evans, T.K. Kirk, and K.E. Hammel. 1994. Biosynthetic pathway for veratryl alcohol in the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60, 709-714   PUBMED
4 Jorgensen, K., A.V. Rasmussen, M. Morant, A.H. Nielsen, N. Bjarnholt, M. Zagrobelny, S. Bak, and B.L. Moller. 2005. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant. Biol. 8, 280- 291   DOI   ScienceOn
5 Machida, M., K. Asai, M. Sano, T. Tanaka, T. Kumagai, G. Terai, K. Kusumoto, T. Arima, O. Akita, Y. Kashiwagi, K. Abe, K. Gomi, H. Horiuchi, K. Kitamoto, T. Kobayashi, M. Takeuchi, D.W. Denning, J.E. Galagan, W.C. Nierman, J. Yu et al. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature, In Press
6 Whitbred J.M. and M.A. Schuler. 2000. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol. 124, 47-58   DOI   ScienceOn
7 Austin, M.B. and J.P. Noel. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79-110   DOI   ScienceOn
8 Ro, D.K. and C.J. Douglas. 2004. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J. Biol. Chem. 279, 2600-2607   DOI   ScienceOn
9 Schijlen, E.G., C.H. Ric de Vos, A.J. van Tunen, and A.G. Bovy. 2004. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65, 2631-2648   DOI   ScienceOn
10 Ishi, K., J. Maruyama, P.R. Juvvadi, H. Nakajima, and K. Kitamoto. 2005. Visualizing nuclear migration during conidiophore development in Aspergillus nidulans and Aspergillus oryzae: multinucleation of conidia occurs through direct migration of plural nuclei from phialides and confers greater viability and early germination in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 69, 747-754   DOI   ScienceOn
11 Moore, B.S. and J.N. Hopke. 2001. Discovery of a new bacterial polyketide biosynthetic pathway. Chembiochem. 2, 35-38   DOI   ScienceOn
12 Dixon, R.A., L. Achnine, P. Kota, C.J. Liu, M.S.S. Reddy, and L.J. Wang. 2002. The phenylpropanoid pathway and plant defence - a genomics perspective. Mol. Plant Pathol. 3, 371-390   DOI   ScienceOn
13 Kim S.H., D. Virmani, K. Wake., K. MacDonald, J.W. Kronstad, and B.E. Ellis . 2001. Cloning and disruption of a phenylalanine ammonia-lyase gene from Ustilago maydis. Curr. Genet. 40, 40-48   DOI   ScienceOn
14 Scheel, D. and K. Hahlbrock. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 40, 347-369   DOI   ScienceOn
15 Tudzynski, B. 2005. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66, 597-611   DOI   PUBMED   ScienceOn
16 Ebel, J., W.E. Schmidt, and R. Loyal. 1984. Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonialyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch. Biochem. Biophys. 232, 240-248   DOI   ScienceOn
17 Gensheimer, M. and A. Mushegian. 2004. Chalcone isomerase family and fold: no longer unique to plants. Protein Science 13, 540-544   DOI   ScienceOn
18 Wilson, D.M., W. Mubatanhema, and Z. Jurjevic. 2002. Biology and ecology of mycotoxigenic Aspergillus species as related to economic and health concerns. Adv. Exp. Med. Biol. 504, 3-17   PUBMED
19 Christensen, A.B., P.L. Gregersen, J. Schroder, and D.B. Collinge. 1998. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Mol. Biol. 37, 849-857   DOI   ScienceOn
20 Varga, J., K. Rigo, S. Kocsube, B. Farkas, and K. Pal. 2003. Diversity of polyketide synthase gene sequences in Aspergillus species. Res. Microbiol. 154, 593-600   DOI   ScienceOn
21 Seshime, Y., P.R. Juvvadi, I. Fujii, and K. Kitamoto. 2005b. Genomic evidences for the existence of a phenylpropanoid metabolic pathway in Aspergillus oryzae. Biochem. Biophys. Res. Commun. 337, 747-751   DOI   ScienceOn
22 Yu, J., D. Bhatnagar, and T.E. Cleveland. 2004. Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett. 564, 126-130   DOI   PUBMED   ScienceOn
23 Gardiner, S.E., J. Schroder, U. Matern, D. Hammer, and K. Hahlbrock. 1980. mRNA-dependent regulation of UDP-apiose synthase activity in irradiated plant cells. J. Biol. Chem. 255, 10752-10757   PUBMED
24 Schuster, B. and J. Retey. 1994. Serine-202 is the putative precursor of the active site dehydroalanine of phenylalanine ammonia lyase. Site-directed mutagenesis studies on the enzyme from parsley (Petroselinum crispum L.). FEBS Lett. 349, 252-254   DOI   ScienceOn
25 Seshime, Y., P.R. Juvvadi, I. Fujii, and K. Kitamoto. 2005a. Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae. Biochem. Biophys. Res. Commun. 331, 253-260   DOI   ScienceOn
26 Saxena, P., G. Yadav, D. Mohanty, and R.S. Gokhale. 2003. A new family of type III polyketide synthases in Mycobacterium tuberculosis. J. Biol. Chem. 278, 44780-44790   DOI   ScienceOn
27 Choquer, M., K.L. Dekkers, H.Q. Chen, L. Cao, P.P. Ueng, M.E. Daub, and K.R. Chung. 2005. The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae. Mol. Plant Microbe. Interact. 18, 468-476   DOI   ScienceOn
28 Fujii, I., A. Watanabe, and Y. Ebizuka. 2004. More functions for multifunctional polyketide synthases p. 97-125. In J.S. Tkacz, L. Lange (eds.), Advances in Fungal Biotechnology for Industry,Agriculture, and Medicine. Kluwer Academic/Plenum Publishers
29 Jez, J.M., M.E. Bowman, R.A. Dixon, and J.P. Noel. 2000. Structure and mechanism of evolutionarily unique enzyme chalcone isomerase. Nat. Struc. Biol. 7, 786-791   DOI   ScienceOn
30 Kitamoto, K. 2002. Molecular biology of the Koji molds. Adv. Appl. Microbiol. 51, 129-153   DOI   PUBMED
31 Winkel-Shirley, B. 2002. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5, 218–223
32 Nijveldt, R.J., E. van Nood, D.E. van Hoorn, P.G. Boelens, K. van Norren, and P.A. van Leeuwen. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74, 418-425   DOI   PUBMED
33 Graziani, S., C. Vasnier, and M.J. Daboussi. 2004. Novel polyketide synthase from Nectria haematococca. Appl. Environ. Microbiol. 70, 2984-2988   DOI   ScienceOn
34 Kitamoto, K., K. Gomi, K. Goto, and S. Hara. 1991. Genetic transfer applied to traditional sake brewing. Biotechnol. Genet. Eng. Rev. 9, 89-125   DOI   PUBMED   ScienceOn
35 Werck-Reichhart, D. 1995. Cytochromes P450 in phenylpropanoid metabolism. Drug Metabol. Drug Interact. 12, 221-243   PUBMED
36 Kusumoto, K., Y. Nogata, and H. Ohta. 2000. Directed deletions in the aflatoxin biosynthesis gene homolog cluster of Aspergillus oryzae. Curr. Genet. 37, 104-111   DOI   ScienceOn
37 Loake, G.J., A.D. Choudhary, M.J. Harrison, M. Mavandad , C.J. Lamb, and R.A. Dixon. 1991. Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell. 3, 829-40   DOI   ScienceOn
38 Boudet, A.-M. 1998. A new view of lignification. Trends in Plant Sci. 3, 67-71   DOI   ScienceOn
39 Murakami, H. 2000. Koji-gaku, p. 110-165. Brewing society of Japan, 4th ed. Tokyo
40 Loake, G.J., O. Faktor, C.J. Lamb, and R.A Dixon. 1992. Combination of H-box CCTACC(N)7CT. and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc. Natl. Acad. Sci. USA 89, 9230- 9234
41 Dixon, R.A. and N.L. Paiva. 1995. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 7, 1085-1097   DOI   ScienceOn
42 Narozna, D., J. Pas, J. Schneider, and C.J. Madrzak. 2004. Two sequences encoding chalcone synthase in yellow lupin (Lupinus luteus l.) may have evolved by gene duplication. Cell. Mol. Biol. Lett. 9, 95-105   PUBMED
43 Dixon, R.A., C.J. Lamb, S. Masoud, V.J. Sewalt, and N.L. Paiva. 1996. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses. Gene 179, 61-71   DOI   ScienceOn
44 Ehlting, J., D. Buttner, Q. Wang, C.J. Douglas, I.E. Somssich, and E. Kombrink. 1999. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J. 19, 9-20   DOI   ScienceOn
45 Funa, N., Y. Ohnishi, I. Fujii, M. Shibuya, Y. Ebizuka, and S. Horinouchi. 1999. A new pathway for polyketide synthesis in microorganisms. Nature 400, 897-899   DOI   ScienceOn
46 Calvo, A.M., R.A. Wilson, J.W. Bok, and N.P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66, 447-459   DOI   ScienceOn
47 Walton, J.D. 2000. Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet. Biol. 30, 167–171
48 Forkmann, G. and S. Martens. 2001. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol. 12, 155-160   DOI   ScienceOn
49 Liou, G.F. and C. Khosla. 2003. Building-block selectivity of polyketide synthases. Curr. Opin. Chem. Biol. 7, 279-284   DOI   ScienceOn