• Title/Summary/Keyword: perturbation method

Search Result 912, Processing Time 0.026 seconds

Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method (Cavity Perturbation Method를 이용한 마이크로파 주파수대의 고온 유전특성 측정 연구)

  • Kim, Dong-Eun;Jung, Jin-Ho;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.455-461
    • /
    • 2006
  • High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Robust Kalman Filtering with Perturbation Estimation Process-for Uncertain Systems (섭동 추정 프로세스를 이용한 불확실 시스템에 대한 강인 칼만 필터링 기법)

  • Kwon Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.201-207
    • /
    • 2006
  • A robust Kalman filtering method for uncertain stochastic systems is suggested by adopting a perturbation estimation process which is to reconstruct total uncertainty with respect to the nominal state transition equation. The predictor and corrector of discrete Kalman filter are reformulated with the perturbation estimator. Successively, the state and perturbation estimation error dynamics and the corresponding error covariance propagation equations are derived as well. Finally we have the recursive algorithm of Combined Kalman Filter-Perturbation Estimator (CKF). The proposed combined Kalman filter-perturbation estimator has the property of integrating innovations and the adaptation capability to system uncertainties. A numerical example is shown to demonstrate the effectiveness of the proposed scheme.

Statistical Analysis of Random Parameter Systems with Perturbation Method (퍼터베이션 방법을 이용한 랜덤 파라미터 시스템의 통계적 해석)

  • 김영균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 1982
  • This paper reviews and describes some applications of perturbation theory in the practical analysis of linear systems which involve random parameters. Statistical measures of the system outputs are derived in terms of statistical measures of the system parameters and inputs (i.e., in the way of perturbed linear operator equations). Perturbed state transition matrix is also derived. With simple first-order and second-order linear system models, we compare the accuracy of perturbation results with the exact ones. And the convergence of perturbation series is also investigated.

  • PDF

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Smoothed Perturbation Analysis for Performance Measures in a Markov Renewal Process

  • Park, Heung-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.445-456
    • /
    • 1996
  • In this paper, we derive unbiased estimators for the sensitivities of expected performance measures in a Markov renewal process. We restrict our derivation to the performance measures during a busy cycle and apply smoothed perturbation analysis method to find those esti-mators. The results show all the terms in the derived estimators can be obtained from a single sample path.

  • PDF

Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.283-291
    • /
    • 2019
  • Accurately determining the natural frequencies and mode shapes of a structural floor is an essential step to assess the floor's human-induced vibration serviceability. In the theoretical analysis, the prestressed concrete floor can be idealized as a multi-span continuous anisotropic plate. This paper presents a new analytical approach to determine the natural frequencies and mode shapes of a multi-span continuous orthotropic plate. The suggested approach is based on the combined modal and perturbation method, which differs from other approaches as it decomposes the admissible functions defining the mode shapes by considering the intermodal coupling. The implementation of this technique is simple, requiring no tedious mathematical calculations. The perturbation solution is validated with the numerical results.

A Study on the Generation of Capillary Waves on Steep Gravity Waves

  • Lee, Seung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.4
    • /
    • pp.45-55
    • /
    • 2000
  • A formal solution method using the complex analysis is given for the problems derived by Longuet-Higgins(1963). The same method is applied to a new perturbation problem of higher approximation. Interpretation of its solution made it possible to confirm that the rough agree-ment of Longuet-Higgins\`s prediction with experimental data of Cox(1958) was mainly due to the fact that the gravity effect in the perturbation problem was neglected for the case when the basic gravity wave not sufficiently steep.

  • PDF

Nonlinear Dynamic Analysis of Space Truss by Using Multistage Homotopy Perturbation Method (시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석)

  • Shon, Su-Deok;Ha, Jun-Hong;Lee, Seung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.879-888
    • /
    • 2012
  • This study aims to apply multistage homotopy perturbation method(MHPM) to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4), and the dynamic response by MHPM concurs with the numerical result. Besides, the displacement response and attractor in the phase space is able to delineate dynamic snapping properties under step excitations and the responses of damped system are reflected well the reduction effect of the displacement.

Application of Stochastic Optimization Method to (s, S) Inventory System ((s, S) 재고관리 시스템에 대한 확률최적화 기법의 응용)

  • Chimyung Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2003
  • In this paper, we focus an optimal policy focus optimal class of (s, S) inventory control systems. To this end, we use the perturbation analysis and apply a stochastic optimization algorithm to minimize the average cost over a period. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. Our simulation results indicate that the optimal estimates of s and S obtained from a stochastic optimization algorithm are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and review period. Another directions involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).

  • PDF