Browse > Article
http://dx.doi.org/10.4150/KPMI.2006.13.6.455

Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method  

Kim, Dong-Eun (Advanced Key Material Lab, Korea Institute of Ceramic Engineering and Technology)
Jung, Jin-Ho (Advanced Key Material Lab, Korea Institute of Ceramic Engineering and Technology)
Lee, Sung-Min (Advanced Key Material Lab, Korea Institute of Ceramic Engineering and Technology)
Kim, Hyung-Tae (Advanced Key Material Lab, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.13, no.6, 2006 , pp. 455-461 More about this Journal
Abstract
High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.
Keywords
Microwave sintering; Cavity Perturbation method; Microwave dielectric constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Usami and T. Ochiai, FC Report 21 (2003) 257 (Japanese)
2 J. W. Kim, S. C. Choi, J. C. Lee and J. H. Oh: J. Kor. Ceram. Soc., 39 (2002) 669 (Korean)
3 B. W. Hakki and P. D. Coleman: IRE Trans., MTT-8 (1960) 402
4 H. Ebara, T. Inoue and O. Hashimoto: Sci. Tech. Adv. Mater., 7 (2006) 77   DOI   ScienceOn
5 I. Wu, S. Nishizawa and O. Hashimoto: Sci. Tech. Adv. Mater., 7 (2006) 84   DOI   ScienceOn
6 V. V. Varadan, R. D. Hollinger, D. K. Ghodgaonkar and V. K. Varadan: IEEE Trans. Instrum. Meas., 40 (1991) 842   DOI   ScienceOn
7 H. M. Altschuler: Chapter IX-Dielectric Constant, Handbook of Microwave Measurements, M. Sucher and J. Fox(Ed.), Polytechnic Press, Interscience Publishers, Vol. 2
8 S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece and K. Schrapel: J. Am. Ceram. Soc., 80 (1997) 1885   DOI   ScienceOn
9 M. Arai, J. G. P. Binner, A. L. Bowden, T. E. Cross, N. G. Evans, M. G. Hamlyn, R. Hutcheon, G. Morin and B. Smith: Microwave : theory and application in materials processing, D. E. Clark, J. R. Laia, W. R. Tinga(Ed.), Vol. 36, The American Ceramic Society, Ohio (1993) 539
10 R. Hutcheon, M. de Jong and F. Adams: J. Microwave Power EE., 27 (1992) 87
11 E. J. Minay, A. R. Boccaccini, P. Veronesi, V. Cannillo and C. Leonelli: J. Mater. Process. Tech., 155-156 (2004) 1749
12 J. D. Walton, Jr.: Inorganic Randoms in Randome Engineering Handbook, J. D. Walton, Jr.(Ed.), Marcel Dekker, Inc., New York (1970) 229
13 E. Breval, J. P. Cheng, D. K. Agrawal, P. Gigal, M. Dennis, R. Roy and A. J. Papworth: Mat. Sci. Eng. A, 391 (2005) 285   DOI   ScienceOn
14 A. Das and S. Das: Microwave Engineering, McGraw-Hill International Edition, Singapore (2001) 235
15 R. P. Feynman, R. B. Leighton and M. Sands: The Feynman Lectures on Physics, Addison Wesley Publishing Co., Inc., Volume II, Reading, Massachusetts (1989) 23-2
16 M. Arai, J. G. P. Binner, G. E. Carr and T. E. Cross:Microwave Processing of Materials III, R. L. Beatty, W. H. Sutton and M. F. Iskander(Ed.), Vol. 269, MRS Symp. Proceedings (1992) 611