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Application of Stochastic Optimization Method
to (s, S) Inventory System

Chimyung Kwon

Abstract

In this paper, we focus an optimal policy for a certain class of (s,S) inventory
control systems. To this end, we use the perturbation analysis and apply a stochastic
optimization algorithm to minimize the average cost over a period. We obtain the
gradients of objective function with respect to ordering amount S and reorder point s
via a combined perturbation method. This method uses the infinitesimal perturbation
analysis and the smoothed perturbation analysis alternatively according to occurrences
of ordering event changes.

Our simulation results indicate that the optimal estimates of s and S obtained from
a stochastic optimization algorithm are quite accurate. We consider that this may be
due to the estimated gradients of little noise from the regenerative system simulation,
and their effect on search procedure when we apply the stochastic optimization
algorithm.

The directions for future study stemming from this research pertain to extension to
the more general inventory system with regard to demand distribution, backlogging
policy, lead time, and review period. Another directions involves the efficiency of
stochastic optimization algorithm related to searching procedure for an improving point

of (s,S).
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1. Introduction

This paper considers how simulation can be
used to obtain an optimal policy for a certain
class of (s, S) inventory systems. An (s, S)
ordering policy specifies that an order is placed
up to S when the inventory level on hand
falls below the level s. The objective of
inventory control system is to find an ordering
policy to minimize a cost function associated
with ordering, holding and shortage costs.

To specify the (s, S) system, we require the
characteristics, lead time, back-
logging policy, and associated costs. We
consider the standard infinite horizon, single
product, and periodic review inventory model
with  full backlogging and independent
demands. Under these conditions, since Scarf
[17] and Iglehart{13] showed that an optimal
policy can be found within the class of (s, S)
policies, a considerable amount of research has
been worked for several decades, however
computationally, obtaining the optimal policies
is quite complex and difficult to apply in real
world [16].

The usual approach for finding the optimal
policies includes dynamic programming(DP) and
stationary analysis(SA)[9]. The DP method
uses a recursive means to find the optimal
values, and the SA method uses numerical
methods and can be applied to restricted cases.
Given the analytical complexity of (s, S)
inventory systems, one obvious way to analyze
is through simulation. While
evaluating alternate systems through simulation
is a problem, optimization
through simulation is a challenging problem in
Andradottir and  Azadivar
provided review on simulation optimization
techniques

demand

the systems
fairly routine
recent  years.

commonly found in simulation

approach is the
stochastic  optimization method based on
gradient search techniques. This method tries
to find the sample path estimates of the
derivatives of the objective function with
respect to (w.r.t) parameters during the course
of simulation run, and then to search an
optimality of system performance via stochastic
approximation method.

To find the gradients of parameters from a
single run of simulation, Ho and Cao first
suggested the perturbation analysis(PA) (12].
PA has been used to estimate derivative of
performance measure in various simulation
systems [2, 5, 6, 10}. Fu presented a method of
obtaining the sample path derivatives for
(s, S) inventory system [9]. He considered a

such

literature[1,3]. One

periodic review system with full backlogging
and holding and shortage costs, where the
demands were assumed to occur once each
period, to be independent and identically
distributed and to have a continuous
distribution function. Under these conditions, he
derived the PA derivative estimators of the
average cost per period wrt s and
g(=S-5s), and provided strong consistency
proofs of them.

The primary objective of this paper is to
find the optimal policies of (s, S) inventory
system by applying
algorithm(SOA).  We
level s

stochastic  optimization
consider that the
inventory characterized by a
regenerative process and obtain the gradient
estimates by the PA method based on this
property. We explore the efficiency of this
algorithm under certain conditions and discuss
the issues in implementation of the SOA.
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2. PA for (s, S) Inventory System

To find the optimal policy for (s, S)
inventory system via the SOA, we need the
dcrivatives of objective function (average cost
per period) w.r.t decision variables, s and S.
PA provides a means to estimate the gradient
of performance measure from a single run of
simulation. The idea of PA is a thought
experiment of introducing a perturbation 4S
(or 4s) into the sample path and tracing its
effect during the course of simulation.

If an infinitesimal change of A4S (or J4s)
produces no change in the sample perturbed
path during simulation run, we can apply the
infinitesimal perturbation analysis(IPA). On the
other hand, if such a change may cause
changes in the sequence of events in the
nominal sample path, then it may result in
the perturbed sample path quite different from
the nominal one. In this case, we can apply
the smoothed perturbation analysis (SPA). In
this section, we first describe the (s, S)
inventory system, and then present the
methodology to derive the gradient estimators
of objective function for IPA and SPA.

2.1 (s, S) Inventory System

We consider a single commodity per period
model. A sequence of ordering decisions is to
be made periodically at the beginning of each
period. These decisions result in an order up to
S if the inventory level of period ;, X; falls
below s Otherwise no order is placed. The
demand of period i D, causes a depletion of
the inventory at the end of each period. So the
recursive equation for X; is
Xi=X;—D; if X;2s, and

given by
Xin=S if

X,{s. FEach period demand is independently
and identically distributed(i.id) with density
function Ad) and distribution function F(d).
Typical sample path for X; is presented in

Figure 1.

A inventory

level
S

D, D,
Dy
D,
s
0 S -
0 1 2 3 4 period

Figure 1. Typical Sample Path

There are three types of costs incurred
during each period which influence the ordering
decisions: a fixed ordering cost %4 when order
a holding cost #
inventory on hand, and a shortage cost p
associated with the failure to meet demand.
Holding and shortage costs are charged at the
end of each period We assume that order
delivery is instantanecus and backlogging is
permitted for excess demand. Our objective is
to find the optimal ordering policy minimizing
the average cost over a period, AC(s, S),
which is the time average function of
inventory level and ordering decision.

We suppose the initial inventory level,
Xo=S and consider that the period inventory

is placed, charged for

levels {X;; i=1, 2,-} is characterized by a
regenerative process with a regenerative point
S. A perturbation 4S changes the inventory
level by 4S, and 4s changes the reorder
point. Thus both perturbations may change the
period of ordering, and whether or not an
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ordering change occurs in a certain period
changes the regenerative cycle lengths and
their associated costs. To estimate the sample
derivatives of AC(s,S), we use the IPA in
case of no change in cycle length, and apply

the SPA in another case. As simulation
advances, we apply the IPA and SPA
alternatively to regenerative cycles.

2.2 Infinitesimal Perturbation Analysis

Figure 2 presents two sample paths for
Inventory system operating at S (nominal
path) and S+4S (perturbed path), where the
solid line shows the inventory level of each
period in ordinary sample path and the dotted
line presents that in the perturbed sample path.
If the sequences of ordering decisions of two
paths are same in regenerative cycles, then we
have the same ordering cost for both paths.
Merely, an infinitesimal change in S produces
an infinitesimal change in the inventory and
shortage costs depending on the inventory
levels.

A
S+4%5 7275 T -
S A7, % L/%-_-
00 ’
S
v
c-—t—w +—8——8>
0 1 2 3 4 period
< cycle 1 > cycle 2

Figure 2. Infinitesimal Change between
Nominal and Perturbed Paths

We let N be the number of total periods in

simulation run. We also let N, and N, be the
number of periods in which the inventory level
is positive and negative, respectively. From the
sample path, we see that the difference in two
objective functions, A4AC(s,S) is given by

4AC(s,8)=[ TC(s,S) ,— TC(s, S),J/IN
=[hd4SX N, — p4Sx N,)/N, (1)

where TC(s,S), and TC(s,S), are the total
cost of the perturbed and nominal sample
paths, respectively for cycles with no order
changes. Thus the sample derivative of
4AC(s,S) wrt S is represented as follows:

dAC(s,S)/8S= Lig}oAAC(s, S)/ 48
=[&N, — pN,1/N. (2)

In a similar way, we can obtain the gradient
estimator of AC(s,S) wurt the reorder point
S. A change from s to s+ 4ds does not effect
on the cost function as long as the sequence
of events from two sample paths remain same.
Therefore we have

8AC(s,S)/8s=0. 3
2.3 Smoothed Perturbation Analysis

Figure 3 presents the situation where the
ordering change situation occurs in the
i—1. We
observe that in the nominal path, an order up
to S is placed.  However, the inventory level
in the perturbed path, X, ,+4S, is greater
than s and no order is placed. From i two
sample paths evolve differently until they
converge at a certain period. If the inventory

perturbed sample path at period
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Figure 3. Order Change Situation and
Convergency of two paths

levels of both sample paths are below s at
period i+2, then orders up to S would be
placed in both paths at period ;. Thus, both
sample converge at j and the assumption of
IPA may hold from ; to the instant when two
paths show the different sequence of events.
We denote the periods from ¢ to j as a cycle.
At j, we reinitialize the simulation and restart
the sample path at the inventory level S.
From 7 to j a finite change in two objective
functions, 4AC(s,S) can be observed during
the course of simulation. For this case, we
apply the SPA suggested by Gong and Ho [4].

We now derive the expression for the
sample derivative estimators under the
condition that 4S goes to 0. We first identify
the situation where the ordering change
potentially occurs. If the demand D;_; brings
the inventory level X;_, to a point below s,
then an order is placed in period : and
X;=S. Thus an potential ordering change

7 when X,=S We
define such a set as M={i: i<N, X;=S).
For the period €M (X;_,<{s), an actual
ordering change occurs if X,_;+4S)s.

occurs for the period

For the convenience of derivation, we define
a variable, @;,_1=s—X;_;. Then the condition

for actual ordering change would be equivalent
to a;_,<4S, i=M. When an actual ordering

change occurs due to 4S, we observe a
change in two cost functions, 4AC(s,S), from
two sample paths during the cycle of ordering
change. Given the ordering change, the
expected ordering change effect per period is
can be represented as the conditional
expectation of 4AC(s,S) multiplied by the
probability of actual ordering change:

E= ;,EMAC(S, S | a;_y<ASI1X Pl a;.,<4S]. (4)

The first term of the above equation is the
expected finite change in two cost functions
caused by an ordering change. The process for
obtaining the conditional expectation of
4AC(s,S) is quite self- explanatory. During
the simulation run, when the condition for
ordering change occurs, we start to trace the
inventory levels of nominal and perturbed
paths respectively and calculate their associated
costs until two inventory levels of both sample
paths fall below s. At this instant, we
re-initialize and restart the sample paths. As
we noted, the cycles form a regenerative
process. From the simulation run enough for
large numbers of cycles, we estimate
EL4(AC(s, S)] as follows:

El4AC(s,9)] =1 TC(s,S) ,— TC(s, S),J/N, (5)

where TC(s,S), and TC(s, S), are same as
given in (1) and they are obtained during
cycles including order changes.

We now consider the second term in (4), the
probability of actual ordering change. We
define a random variable, Z;_,=X;_,~s We

note that X, =X; ,—D;.,. Then the
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condition of X, <s (i=M) can be expressed
as X;—3—XD;_;, which
Zi1<D;_. For /=M, we calculate the
conditional distribution for a;_;:

is equivalent to

Pr(a,-_ISdS | X,'_1<S)=P7’((I,—_ISAS| D,'—1>Z,'_1)

=P7(D,‘~ISZ,'_1+A.S‘ D[_I>Z,'_1)
=H(Zi+49)-FZ:_)/[1-FZ_)).  (6)

Due to the regenerative property, @; and Z;
are iid for all ¢ and correspond to the values
in the last period of each regeneration cycle.
Merely for notational convenience, we drop the
subscript i—1 in Z. Then the probability of
occurrence of actual ordering change in period
7, P;is given by

Pi=[F(Z+ 49— FK2)]/[1- F2)]. M

Hence, under the condition of 450, the SPA
estimator is expressed as

8A((s,S)/8S=
;{LE%E[AAC(S, S) | a;<48S] ng}oPr{a,-_lSAS]/AS

= E4AC(s,S) | ;< 4S]x
lim [ RZ+ 45) ~ K21/ 45x1/[1- (2]

= E{4AC(s,S) | @;-1<4SIx R D/ [1 —F(2)]. (8)

As we see in equation (1) and (5), 4AC(s,S)
and El4AC(s,S)] are the time average cost
over a period. Therefore the total gradient
0AC(s,S)/3S can be estimated as the sum of
the IPA and SPA components.

Next we find the 8AC(s,S)/8s in a similar
way of obtaining the 64C(s,S)/d8S. Figure 4
shows that a potential

ordering change

situation occurs at period 7—1 if the inventory
level X;., is above s and X; ; is below s

If a small perturbation Jds
X;_1>s—4ds, then no order is placed in the

causes that

perturbed sample path. Thus an actual ordering
change occurs at period ¢

two paths convergence

order change situation

Figure 4. Order Change Situation and
convergence of two paths

if e, ,=s—X,_1<4s. In a similar procedure
developing the equation (6), we find that P; is
given by
Pra;, 1<ds| X;_,{s)

=PAD;\<Z; +ds| D> Z;-)

=[FZi-+45) =~ KZ,-DI/[1-F(Z;_)]. (9)

When an actual ordering change occurs due to
ds, from the simulation run, we estimate
El4(AC(s,S)] in the same way as given in
equation (5). Finally we calculate the derivative

estimate of s as follows:
dAC(s,S)/8s= ;B%E[AAC(S, S| a;_<ds]

X L]s{n,OPrfa,-_ISdS]/dS

= EL4AC(s,S) | a; 1< 4s]
X ‘ldisr_nﬂ[F(Z—f-ds)—F(Z)]/dle/[l~F(Z)]
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= E{4AC(s,S) | a;_ < ds)X A2)/11~F(2)]10)

This equation is given by the same form as
the equation (8). From equation (3), we note
the gradient for s is equal to 0 for IPA case.
Hence the total gradient of 8AC(s,S)/8s is
equivalent to SPA component.

3. Stochastic Optimization Algorithm

The stochastic optimization method can be
used for simulation optimization problem by
incorporating PA to estimate the derivative of
performance measure w.r.t system parameters
[4, 6]. Through a single simulation run, we
compute the gradients of AC(s,S) wrt s and
S, and we use these gradients effectively for
hill climbing of unknown cost function.

Suppose that we simulate the system with a
given point (s,S) for N periods. Based on
this simulation run, we compute the gradient
of AC(s,S) wrt s and S by using PA
algorithm and then simulate the system with
the updated s and S repeatedly. For searching
the minimum AC(s,S), we continuously move
other points of (s,S) such that we have the
improved AC(s,S). In this way, an estimate of
the optimum (s, S) can be obtained at the end
of a simulation run. This searching scheme is
similar to that of the non-linear optimization
method with constraint of 0<s<S. The usual
form of a hill climbing optimization scheme
uses an iterative algorithm:

Sn+1=S,+ a,l 6AC(s,S)/8s] and
Sn+1=Sn+an[ 6AC(S,S)/6S], (11)

where s, and S, are the updated s and S

respectively; and a, is the moving weight at

the nth iteration [15]. We now present the
SOA and discuss this algorithm.

Stochastic Optimization Algorithm

(0) Set the iteration number #z=1. Choose
initial values of s, and S,.

(1) Simulate the system at s, and S, during
the N periods and estimate the derivatives of
0AC(s, S)/ 6s and J0AC(s,S)/6S by PA
presented in Section 2.

(2) Update the s and S as follows:

Sp+1= S, + a,l 6AC(s, S)/ 4]
with A=0.2.

(3) Check the condition that S,=s,>0. If
Sy=s,20 then go to step 4. Otherwise reduce

where a,=A/n

the moving size in (2) by changing the value
of a,=A/2n.

(4) Stopping criterion: If «,[S8AC(s,S)/8s]<e
and  a,[ 8AC(s,S)/8S]<e, then stop and find

estimate for the optimum( s, S*). Otherwise go
to step (1) with n=n+1.

At step (1), the gradients are stochastic and
their values depend upon the simulation
periods. So their estimates may have noises.
Similarly to the stochastic optimization
procedure [15, 18], step (2) adopts a, to

satisfy the conditions;
lima, =0, n;“":” and ";ai@o; (12)

and simply chooses a constant multiple of
reciprocal of the iteration number #. Such a
choice results in larger moving length of Sy
and S, in the first few steps, on the other

hand, the moving length will be shorter as #
increases.
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Step (3) is for maintaining the condition of
S=s=>(0. When estimates of derivatives include
large errors and  moving sizes  of

first-few—stages are not small, the updated s,
may be greater than S,. In this case, we

shorten the length of moving step by half to
ensure the condition S=s. The interpretation
of stopping criterion is that if the maximum
moving lengths for s, and S, are less than
the prescribed value €, we stop the algorithm.
A choice of this value gives a trade-off
relationship between run length and accuracy
of the estimated optimum.

4. Numerical Example

We conduct a set of simulation experiments
on the (s,S) inventory model to evaluate the
performance of SOA and offer a summary and
results. We consider that the demand per
period has a standard exponential distribution.
We also consider that an ordering cost is 10,
and the holding and penalty costs per period
are 5 and 50, respectively.

To wunderstand a response surface of
AC(s,S) in two dimensional space of (s, S),
we simulate this system in the range of
1<5<5.8 and 0<s<S for 50,000 period time.
Figure 5 shows the shape of response surface
of AC(s,S) roughly. From a large set of
simulation runs, we guess that an optimal
policy which yields the minimum AC(s, S)*
may happen at the point around
(s,8)=1(1.2, 3.7) and AC(s, S)*~16.

AC{s,

.15

20.26 |

22.35

o s
f.0 080

Figure 5. Response Surface of AC(s,S)

We simulate this model with the initial
values of (s, S))=(2,5). We obtain the
gradient of AC(s,S) wrt s, and S,
simulation run period N=10,000, and then we
update the s, and S, with increasement of #

from

by 1. We use a stopping rule of algorithm
with €=0.01. A summary of simulation
results is presented in Table 1, where gradient
estimates of AC(s,S), and AC(s,S) at a
point (s, S) are shown in terms of iteration
number #. As # increases, the absolute
values of both gradients tend to be smaller. At
n=>55, the algorithm stopping criterion is
satisfied. = 'We guess that around the optimal
point (s, S)", the gradient estimates of s and
S may be close to 0. When we use a stopping
criterion that absolute values of gradient
estimates should be less than 0.01 (instead of
moving length), an estimate of optimal point
(s,9)" is given by (365, 1.18) and an estimate
for AC(s,S)* is equal to 159. From these
results, the SOA is quite accurate in the
described example.
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Table 1. Estimates for S and s, their gradient,
and average cost over period.

n ) s | 8Al(s,9)/8S| 8AC(s, S)/8s| AC(s,S)

1 | 5000 |2.000 -2.740 -1.077 18214

5 | 4086 | 1.571 -1.892 -417 16.414
10 | 3914 | 1.444 -811 =777 16.152
15 | 3.853 | 1.383 -.657 -.601 16.063
20 | 3.820 | 1.347 -.630 -455 16.029
25 13797 11325 -752 -216 15991
30 | 3.779 | 1.309 -.376 -458 15.987
35 | 3.766 | 1.29 -.354 -.420 15.974
40 | 3,756 | 1.286 -.340 -394 15.966
45 | 3.747 | 1.277 -.459 -.248 15948
50 | 3.740 [ 1.270 -.317 -.351 15.953
55 | 3734 | 1.264 -432 -.211 15937

Figure 6 illustrates a searching procedure of
SOA based on the results in Table 1. Table 2
presents simulation results obtained by 4
independent replications with simulation run
period of 5,000 for updating derivatives.

Table 2. Estimates for S and s, and AC(s,S)

n S S AC(s,S)
46 3.732 1.331 15.825
63 3.672 1.331 16.920
56 3.799 1.230 16.135
60 3.644 1.329 16.093

—

e 1780
—

25.30
e ]

e

.50 ———————
//
W
n=1
/ / nes8 =
£
T —
2
ke I
2.4
s

46 5.8

Figure 6. Searching Procedure of Stochastic
Optimization Algorithm

5. Conclusion

We apply a SOA to an (s, S) inventory
control system. We estimate the gradients of
average cost over a period wrt ordering

amount S and reorder point s by a combined
perturbation method of IPA and SPA. The
combined method uses the IPA and SPA
alternatively according to occurrences of
ordering event changes. Using the estimated
gradients, we search the optimum policy by
the SOA. Thus far, much of research on the
PA focused experimental results demonstrating
its accuracy for various systems [7, 8 14]. As
a step in this direction, we here study PA
applied to (s, S) inventory system.

Our simulation results show that the
estimated optimum 1is quite accurate. We
consider that this is due to little noise occurred
in updating the sensitivity and the regenerative
property of the (s, S) inventory system. This
result is even from a simple example, but we
expect that the SOA based on PA may yield
very promising results in the general (s, S)
inventory system.

Finally we suggest the directions for future
study to extend this research to the more
general inventory system with regard to
demand distribution, backlogging policy, lead
time, and review period having renewal arrival
process. Another directions may involve the
efficiency of SOA in searching procedure for
an improving point of (s, S).
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