References
- Auciello, N.M. (1993), "Free vibrations of Timoshenko beams with variable cross sections: a Lagrangian approach", Proceedings of CIVIL-COMP 93, Edinburgh, August.
- Auciello, N.M. (2000), "Free vibration of a restrained shear-deformable tapered beam with a tip mass at its free end", J. Sound Vib., 237(3), 542-549. https://doi.org/10.1006/jsvi.2000.3004
- Auciello, N.M. and Ercolano, A. (2004), "A general solution for dynamic response of axially loaded nonuniform Timoshenko beams", Int. J. Solids Struct., 41(18-19), 4861-4874. https://doi.org/10.1016/j.ijsolstr.2004.04.036
- Chopra, A.K. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall, Englewood Cliffs, NJ.
- Cleghorn, W.L. and Tabarrok, B. (1992), "Finite element formulation of a tapered Timoshenko beam for free lateral vibration analysis", J. Sound Vib., 152(3), 461-470. https://doi.org/10.1016/0022-460X(92)90481-C
- Eisenberger, M. (1995), "Dynamic stiffness matrix for variable cross-section Timoshenko beams", Commun. Numer. Meth. Eng., 11(6), 507- 513. https://doi.org/10.1002/cnm.1640110605
- Gutierrez, R.H. Laura, P.A.A. and Rossi, R.E. (1991), "Fundamental frequency of vibration of a Timoshenko beam of non-uniform thickness", J. Sound Vib., 145(2), 341- 344. https://doi.org/10.1016/0022-460X(91)90598-E
- Khaji, N. Shafiei, M. and Jalalpour, M. (2009), "Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions", Int. J. Mech. Sci., 51(9-10), 667- 681. https://doi.org/10.1016/j.ijmecsci.2009.07.004
- Leung, A.Y.T. and Zhou, W.E. (1995), "Dynamic stiffness analysis of axially loaded non-uniform Timoshenko columns", Comput. Struct., 56(4), 577-588. https://doi.org/10.1016/0045-7949(94)00554-G
- Lin, H.Y. (2009), "On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a number of various concentrated elements", J. Sound Vib., 319(1-2), 593-605. https://doi.org/10.1016/j.jsv.2008.05.022
- Lin, H.Y. and Tsai, Y.C. (2006), "On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias", Struct. Eng. Mech., 22(6), 701-717. https://doi.org/10.12989/sem.2006.22.6.701
- Lou, M.L. Duan, Q.H. and Chen, G.D. (2005), "Modal perturbation method for the dynamic characteristics of Timoshenko beams", Shock Vib., 12(6), 425-434. https://doi.org/10.1155/2005/824616
- Pan, D.G. and Lou, M.L. (2009), "Semi-analytic solution of dynamic characteristics of non-prismatic Timoshenko simple supported beams", Eng. Mech. 26(8), 6-9.(in Chinese)
- Rossi, R.E. Laura, P.A.A and Gutierrez, R.H. (1990), "A note on transverse vibrations of a Timoshenko beam of non-uniform thickness clamped at one end and carrying a concentrated mass at the other", J. Sound Vib., 143(3), 491-502. https://doi.org/10.1016/0022-460X(90)90738-L
- Ruge, P. and Birk, C. (2007), "A comparison of infinite Timoshenko and Euler-Bernoulli beam models on Winkler foundation in the frequency- and time-domain", J. Sound Vib., 304(3-5), 932-947. https://doi.org/10.1016/j.jsv.2007.04.001
- Tong, X. Tabarrok, B. and Yeh, K.Y. (1995), "Vibration analysis of Timoshenko beams with non- homogeneity and varying cross-section", J. Sound Vib., 186(5), 821-835. https://doi.org/10.1006/jsvi.1995.0490
- Weaver, W., Timoshenko, S.P. and Young, D.H. (1990), Vibration Problems in Engineering, 5th Edition, John Wiley & Sons, New York.
- Wu, J.S. and Chen, D.W. (2001), "Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems by using the numerical assembly technique", Int. J. Numer. Method. Eng., 50(5), 1039-1058. https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D
- Yuan, S., Ye, K., Xiao, C., Williams, F.W. and Kennedy, D. (2007), "Exact dynamic stiffness method for nonuniform Timoshenko beam vibrations and Bernoulli-Euler column buckling", J. Sound Vib., 303(3-5), 526-537. https://doi.org/10.1016/j.jsv.2007.01.036
Cited by
- Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials vol.43, pp.1, 2012, https://doi.org/10.12989/sem.2012.43.1.105
- The modal characteristics of non-uniform multi-span continuous beam bridges vol.52, pp.5, 2014, https://doi.org/10.12989/sem.2014.52.5.997
- Free vibration analysis of non-prismatic beams under variable axial forces vol.43, pp.5, 2012, https://doi.org/10.12989/sem.2012.43.5.561
- A new approach for free vibration analysis of nonuniform tall building structures with axial force effects pp.15417794, 2019, https://doi.org/10.1002/tal.1591
- Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method vol.19, pp.5, 2011, https://doi.org/10.12989/gae.2019.19.5.463