• Title/Summary/Keyword: perturbation equations

Search Result 308, Processing Time 0.019 seconds

MODIFIED DECOMPOSITION METHOD FOR SOLVING INITIAL AND BOUNDARY VALUE PROBLEMS USING PADE APPROXIMANTS

  • Noor, Muhammad Aslam;Noor, Khalida Inayat;Mohyud-Din, Syed Tauseef;Shaikh, Noor Ahmed
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1265-1277
    • /
    • 2009
  • In this paper, we apply a new decomposition method for solving initial and boundary value problems, which is due to Noor and Noor [18]. The analytical results are calculated in terms of convergent series with easily computable components. The diagonal Pade approximants are applied to make the work more concise and for the better understanding of the solution behavior. The proposed technique is tested on boundary layer problem; Thomas-Fermi, Blasius and sixth-order singularly perturbed Boussinesq equations. Numerical results reveal the complete reliability of the suggested scheme. This new decomposition method can be viewed as an alternative of Adomian decomposition method and homotopy perturbation methods.

  • PDF

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.

Nonlinear Oscillation Characteristics in Combination Resonance Region Considering Damping Effects (조합공진 영역에서 감쇠의 영향을 고려한 비선형 진동 응답 특성)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.849-855
    • /
    • 2010
  • Damping may change the response characteristics of nonlinear oscillations due to the parametric excitation of a thin cantilever beam. When the natural frequencies of the first bending and torsional modes are of the same order of magnitude, we can observe the one-to-one combination resonance in the perturbation analysis depending on the characteristic parameters. The nonlinear behavior about the combination resonance reveals a chaotic motion depending on the natural frequencies and damping ratio. We can analyze the chaotic dynamics by using the eigenvalue analysis of the perturbed components. In this paper, we derived the equations for autonomous system and solved them to obtain the characteristic equation. The stability analysis was carried out by examining the eigenvalues. Numerical integration gave the physical behavior of each mode for given parameters.

Nonlinear Acoustical Modeling of Poroelastic Materials (비선형성을 고려한 탄성 다공성 재질의 음향학적 모델링)

  • 김진섭;이수일;강영준
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1218-1226
    • /
    • 1999
  • In this paper, the extended Biot's semilinear model was developed. Combining the extended Biot model with the dynamic equation yields the nonlinear wave equation in poproelastic sound absorbing materials. Both perturbation and matching techniques are used to find solutions for nonlinear wave equations. By comparing results between linear and nonlinear wave solutions, characteristics of nonlinear waves in poroelastic sound abosrbing materials have been studied. Nonlinear waves were found to be attenuated faster than the linear ones. A maximum amplitude of the nonlinear wave occurred near its surface boundaries and decay quickly with distance from the surface. It has also been found that, if the amplitudes of linear waves are known at the surface boundaries, those of nonlinear ones can be determined. This will be the basis of finding effects of nonlinearity on the absorption coefficient and the transmission loss.

  • PDF

Stochastic free vibration analysis of smart random composite plates

  • Singh, B.N.;Vyas, N.;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.481-506
    • /
    • 2009
  • The present study is concerned with the stochastic linear free vibration study of laminated composite plate embedded with piezoelectric layers with random material properties. The system equations are derived using higher order shear deformation theory. The lamina material properties of the laminate are modeled as basic random variables for accurate prediction of the system behavior. A $C^0$ finite element is used for spatial descretization of the laminate. First order Taylor series based mean centered perturbation technique in conjunction with finite element method is outlined for the problem. The outlined probabilistic approach is used to obtain typical numerical results, i.e., the mean and standard deviation of natural frequency. Different combinations of simply supported, clamped and free boundary conditions are considered. The effect of side to thickness ratio, aspect ratio, lamination scheme on scattering of natural frequency is studied. The results are compared with those available in literature and an independent Monte Carlo simulation.

A Study on the Dynamic Stability of the Long Vertical Beam Subjected to the Parametric Excitation (파라메터 기진에 의한 긴수직보의 동적안정성에 관한 연구)

  • Y.C. Kim;J.S. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.69-82
    • /
    • 1991
  • The dynamic stability of the long vertical beam subjected to the periodic axial load is investigated. As a solution method, the Galerkin's method is used to obtain a set of coupled Mathieu type equations. To obtain the stability chart, both the perturbation method and numerical method are used, and the results of the both methods are compared with each other. The stability regions for the various boundary conditions are obtained, Also the effects of the viscous damping, the mean tension and the multi-frequency parametric excitation are studied in detail.

  • PDF

Calculations of Polarizabilities by Integral Hellmann-Feynman Theorem (Integral Hellmann-Feynman Theorem에 의한 Polarizability의 평가)

  • Kim, Ho-Jing;Cho, Ung-In
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.127-131
    • /
    • 1970
  • The variational approach for the direct evaluation of the energy difference ${\Delta}$E is studied. The method is based on the differential equation corresponding to the integral Hellmann-Feynman formula. The ${\Delta}$E is given by the expectation value of the Hermitian operator which does not involve the 1/$r_{ij}$ term. Because of its variational nature of the method, the coupling problem of the differential equations which are encountered in perturbation treatment does not occur. The method is applied to the evaluation of the electric polarizabilities of the Helium isoelectronic series atoms. The result is in good agreement with the experiment. The method is compared with the recent works of Karplus et al.

  • PDF

HYBRID DIFFERENCE SCHEMES FOR SINGULARLY PERTURBED PROBLEM OF MIXED TYPE WITH DISCONTINUOUS SOURCE TERM

  • Priyadharshini, R. Mythili;Ramanujam, N.;Valanarasu, T.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1035-1054
    • /
    • 2010
  • We consider a mixed type singularly perturbed one dimensional elliptic problem with discontinuous source term. The domain under consideration is partitioned into two subdomains. A convection-diffusion and a reaction-diffusion type equations are posed on the first and second subdomains respectively. Two hybrid difference schemes on Shishkin mesh are constructed and we prove that the schemes are almost second order convergence in the maximum norm independent of the diffusion parameter. Error bounds for the numerical solution and its numerical derivative are established. Numerical results are presented which support the theoretical results.

Vibration analysis of a beam on a nonlinear elastic foundation

  • Karahan, M.M. Fatih;Pakdemirli, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • Nonlinear vibrations of an Euler-Bernoulli beam resting on a nonlinear elastic foundation are discussed. In search of approximate analytical solutions, the classical multiple scales (MS) and the multiple scales Lindstedt Poincare (MSLP) methods are used. The case of primary resonance is investigated. Amplitude and phase modulation equations are obtained. Steady state solutions are considered. Frequency response curves obtained by both methods are contrasted with each other with respect to the effect of various physical parameters. For weakly nonlinear systems, MS and MSLP solutions are in good agreement. For strong hardening nonlinearities, MSLP solutions exhibit the usual jump phenomena whereas MS solutions are not reliable producing backward curves which are unphysical.