Browse > Article

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery  

Nagarani, P. (Department of Mathematics & Computer Science, The University of the West Indies)
Sarojamma, G. (Department of Applied Mathematics, Sri Padmavati Women's University)
Publication Information
Korea-Australia Rheology Journal / v.20, no.4, 2008 , pp. 189-196 More about this Journal
Abstract
The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.
Keywords
body acceleration; Casson fluid; stenosed artery; pulsatile flow;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 12
연도 인용수 순위
1 Aroesty, J. and J. F. Gross, 1972b, Pulsatile flow in small blood vessels, I. Casson theory, Biorheology 9, 33- 42   DOI
2 El-Shahed, M., 2003, Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration, Applied Mathematics and Computation 138, 479-488   DOI   ScienceOn
3 Misra, J. C. and B. K. Sahu, 1988, Flow through blood vessels under the action of a periodic acceleration field: a mathematical analysis, Comput. Math. Appl. 16, 993-1016   DOI   ScienceOn
4 Scott Blair, G. W., 1959, An equation for flow of blood serum through glass tubes, Nature 183, 613-614   DOI   ScienceOn
5 Young, D. F., 1968, Effect of a time-dependent stenosis on flow through a tube, J. Engng. Ind. Trans. ASME 90, 248-254   DOI
6 Usha, R. and K. Prema, 1999, Pulsatile flow of particle-fluid suspension model of blood under periodic body acceleration, ZAMP 50, 175-192   DOI
7 Merrill, E. W. and G. A. Pelletier, 1967, Viscosity of human blood: transition from Newtonian to non-Newtonian, J. Appl. Physiol. 23, 178-182   DOI
8 Chaturani, P. and V. Palanisami, 1990a, Casson fluid model of pulsatile flow of blood flow under periodic body acceleration, Biorheol. 27, 619-630   DOI
9 Majhi, S. N. and V. R. Nair, 1994, Pulsatile flow of third grade fluids under body acceleration - modelling blood flow, Int. J. Eng. Sci. 32, 839-846   DOI   ScienceOn
10 Arntzenius, A. C., J. D. Laird, A. Noordergraff, P. D. Verdouw and P. H. Huisman, 1972, Body acceleration synchronous with heart beat, Biophy. Cardiol. 29, 1-5
11 Aroesty, J. and J. F. Gross, 1972a, The mathematics of pulsatile flow in small blood vessels, I. Casson theory, Micro Vascular Research 4, 1-12   DOI   ScienceOn
12 Dintenfass, L., 1977, Viscosity factors in hypertensive and cardiovascular diseases, Cardiovascular Medicine 2, 337-353
13 Fry, D. I., 1968, Acute vascular endothelial changes associated with increased blood velocity gradients, Circulation Research 22, 165-197   DOI   ScienceOn
14 Fung, Y. C., 1986, Biomechanics, Mechanical properties of living tissues, Springer-Verlag, New York, 68-81
15 Elshehawey, E. F., E. M. E. Elbarbary, M. E. Elsayed, N. A. S. Afifi and M. El-Shahed, 2000, Pulsatile flow of blood through a porous medium under periodic body acceleration, Int. Journal of theoretical Physics 39(1), 183-188   DOI   ScienceOn
16 Sarojamma, G. and P. Nagarani, 2002, Pulsatile flow of Casson fluid in a homogeneous porous medium subject to external acceleration, Int. J. of Non-Linear Differential Equations Theory-Methods and Applications 7, 50-64
17 Charam, S. E. and G. S. Kurland, 1965, Viscometry of human blood for shear rates of 0-100,000 $sec^{−1}$, Nature 206, 617-618   DOI   ScienceOn
18 Chaturani, P. and V. Palanisami, 1990b, Pulsatile flow of powerlaw fluid model for blood flow under periodic body acceleration, Biorheol. 27, 747-758   DOI
19 Mandal, P. K., S. Chakravarthy, A. Mandal and N. Amin, 2007, Effect of body acceleration on unsteady pulsatile flow of non- Newtonian fluid through a stenosed artery, Applied Mathematics and Computation 189, 766-779   DOI   ScienceOn
20 Belardinelli, E., M. Ursino and E. Lemmi, 1989, A preliminary theoretical study of arterial pressure perturbations under shock accelerations, ASME J. Biomech. Eng. 111, 233-240   DOI   ScienceOn
21 Cokelet, G. R., E. W. Merill, E. R. Gilliland, H. Shin, A. Britten and R. E. Wells, 1963, The rheology of human blood -measurement near and at zero shear rate, Trans. Soc. Rheol. 7, 303-317   DOI
22 Merrill, E. W., A. M. Benis, E. R. Gilliland, T. K. Sherwood and E. W. Salzman, 1965, Pressure flow relations of human blood in hollow fibre at low shear rates, Appl. Physiol. 20, 954-967   DOI
23 Sud, V. K. and G. S. Sekhon, 1985, Arterial flow under periodic body acceleration, Bull. Math. Biol. 47, 35-52   DOI
24 Burton, R. R., S. D. Leverett Jr and E. D. Michaelsow, 1974, Man at high sustained $+G_z$ acceleration: a review, Aerospace Med. 46, 1251-1253
25 Verdouw, P. D., A. Noordergraff, A. C. Arntzenius and P. H. Huisman, 1973, Relative movement between subject and support in body acceleration applied synchronously with the heartbeat (BASH), Biophy. Cardiol. 31, 57-62
26 Hiatt, E. P., J. P. Meechan and Galambos, 1969, Reports on human acceleration, Washington, D.C, publication 901, NASNRC
27 Caro, C. G., 1981, Recent advances in cardiovascular diseases- 2 (supplement), 6-11