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Abstract

The dynamic stability of the long vertical beam subjected to the periodic axial load is investigated.
As a solution method, the Galerkin’s method is used to obtain a set of coupled Mathieu type equations.
To obtain the stability chart, both the perturbation method and numerical method are used, and the re-
sults of the both methods are compared with each other.

The stability regions for the various boundary conditicns are obtained. Also the effects of the viscous

damping, the mean tension and the multi —frequency parametric excitation are studied in detail.
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Nomenclature

®n » the m™* Mode Shape

[¢], [¢] : Fundamental Matrix

5 ! Dimensionless Euler Buckling Load

A;  : Characteristic Multiplier

w; : the  Natural Frequency

P, ! Euler Buckling Load

P(x, t) : Periodic Axial Load

Py(x) : Spacially varying tension due to gravity
P (x) : Dynamic Component of the Axial Load
o(x) : Nondimensionalized Static Tension
#a(?)  : Generalized Coordinate

w : Lateral Deflection of the Beam

x . Coordinate along the Beam

¢ :Excitation Amplitude Parameter

1. Introduction

In recent decades, the dynamic stability of the
elastic system subjected to the parametric
excitation has been studied by many re-
searchers.

The term, parametric excitation can be
characterized by the harmonic variation of
coefficients of the governing differential
equations.

In the case of the simply supported beam un-
der the periodic axial loads, the governing
equation contains the periodic coefficient and it
can be transformed to a set of uncoupled
Mathieu type equation. Therefore, only the
usual parametric resonanses occur, and then the
instability region corresponding to the exciting
frequency which is close to twice the natural
frequency is possible.

When the beam does not have simply sup-
ported ends, the governing equation gives a set
of coupled Mathieu type equations. In this case,
the combination resonances as well as the para-

metric resonances may occur.

Historically, Bolotin[2, 3] was the first to
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study the problem of the parametric instability
of the elastic system under periodic loads. He
obtained only instability regions corresponding
to parametric resonances by means of the me-
thod of Hill’s infinite determinant.

Iwatsubo et al.[4] investigated the stability of
cantilevers under parametric excitation by digi-
tal simulation technique.
Saigo[5]
experimentally the exsistence of combination re-

Iwatsubo  and demonstrated
sonances in the responses of clamped —clamped
and clamped —simply supported columns under
periodic axial load. Using analog simulation
technique, Sugiyama et al[6] found the combi-
nation resonaces in the case of the clamped—
free columns subjected to the periodic tangential
loads.

Nayfeh and Mook[7] obtained approximate
transition curve for many resonance situations
by perturbation technique. Hsu[8] obtained
approximate solutions for various resonant situ-
ations.

Hsu[9, 10, 11] also developed the numerical
method to approximate transition matrix to
overcome the deficiency of numerical works.
Friedmann et. al [12] developed the efficient
numerical scheme for computing the transition
matrix at the end of one period.

The main purpose of the present paper is to
make comparisions among the existing methods
in the literature and to study the dynamic stab-
ility of the long vertical beam subjected to the
periodic axial loads for various constraint con-
ditions. The supporting legs of Tension Leg
Platforms can be modeled as such kind of sys-
tem.

Finally, the instability regions for various
boundary conditions are obtained. Also the ef-
fects of viscous damping, mean tension and the
multl—frequency parametric excitation on the

instability regions are studied in detalil.
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2. Equation of Motion

In order to derive the equation of motion, let's
assume the followings :

The beam is long and slender, such that the
shear deformation and the rotary inertia effect
can be neglected. Furthermore, the beam is
excited by the axial harmonic forces at the
upper end. Then, referring to Fig. 1, the
equation of motion of the beam with varying
tension due to gravity force is given by

S

Fw a Jew
Efwé;; -+ gx-[P(x, )] v T+ m Py

)
+cat = {J, (1)

Where £ is Young’s modulus, [ is the moment
of inertia of the cross—section, m is the mass of
beam per unit length and ¢ is the damping co-
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Fig. 1 Beams subjected to the periodic axial force
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elficient. The space and time-varying iension
P(x, 1) can be divided by two parts, 1. e., static
and dynamic, P{x, 1) = Pi(x) + Picos@t.

The typical boundary conditions can be de-
scribed as follows :

w(0) =0, w(l) =10,

@10) =0, »{L) =0 for simply supported
ends, (2a)

w(0) =0, 0L} =0,

w(0) =0, w (L) = 0 for clamped — free ends,
(2b)

w(0) =0, w{L) =0,

w(0) =0, w{Ll)=0 for clamped—simply
supported ends, {2¢)
and

w(0) =0, (L) =0,

w{0) =0, o{L) =0 for clamped—clamped
ends, (2b)

With introduction of the following di-

mensionless parameters
x* = x/L, 0¥ =w/L, *=1/El/ml},

u= L}/ mEl
8= P.L}EIL

o= Po/Pe
&= P/F,
2% = QLA m/El (3)
Eq. (1) becomes
Sew* Pw* dw* 3
e * gpr e T llel
E 1
-+ £cos@*1* ) 9w 1=0, {4}

ax*
For convenience we shall drop the asterisk in
what follows.
Since we can not have a closed form solution
of Eq.(4}, we express the approximate solution
as an expansion of the free —oscillation modes.

(s 0= I unB)gu(x) (5)

The mode shape functions ¢,{x) must satisfy
the following equation.

g (x) + Fle(2)p(0) T~ wipalx) =0, (6)
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With corresponding boundary conditions. In
the case of spacially varying tension of the
beam, the eigen functions ¢,(x) were found in
closed form by KIM[13] by using WKB method
and reported in [14]. In the case of linearly var-
ying tension, the difference between the eigen
values using the mean tension value
(Twean = [ Tin + Twmax]/2) and those using the
variable tension is very samll. However, the
mode shape has some difference. when we use
the variable tension, the maximum amplitude in
mode shape lies in the lower half of the beam.

Substituting Eq. (5) into Eq.(4), and multi-
plying ¢n(x) both sides, and integrating from
=0, to x=1, we can obtain the following

equations.

i + ity + @+ fE 0S O T fon ta =0 (7)

m=1, 2,
where
1
fo Pmtba dx
S = - (7a)
J, galds

The equation (7) are an infinite set of
coupled linear equtions having periodic co-
efficients. Thus, this is a problem of a para-
metrically excited system having infinite de-

grees of freedom.

3. Solution Methods

There are a number of techniques available
for the determination of the stability boundaries.
These techiques can be divided broadly into
three classes :

First one is the Hill’'s Method of Infinite De-
terminants which had used extensively for
single degree—of freedom system. But it has
proved to be cumbersome and inefficient when

applied to multidegree—of —freedom system.
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The second one is perturbation methods based
on the assumption that the term containing per-
iodic coefficients is small compared to other
terms. This assumption makes the limit of the
use of the perturbation method. The third me-
thod is the numerical method which is the most
general one, but it requires enormous com-
putational efforts for obtaining the transition
matrix of large systems. Owing to the develop-
ment of the high speed computer, this deficiency
of the numerical method can be easily over-
come.

In this paper, we will use both perturbatibn
method and the numerical method to obtain the
stability characteristics and to make com-
parisions between the two methods.

3.1 Perturbation Method

To analyze the dynamic response and the
stability of parametrically excited systems by
perturbation methods, we assume that the para-
metric excitation can be expressed in terms of
small parameter ¢. To accomplish this, we have
to specify an order of parameters of Eq.(7) so
as to be small in some sense. Letting

£=2e&, n=2¢h (8)

Fq.(7) becomes

Un + 260Uy + lu, + 2P cos Ot an""’ U =10
=

n=1,2, (9)
The straight forward asymptotic expansion
will produce the secular terms. Therefore, in
order to eliminate the secular terms the method
of multiple scales will be used. To get the uni-
formly valid expansion, let’'s assume that the
solution 1s of the following form :
w(t;e) =un(To, Ti, T) + eua(To, Ti, T2)
+ (10)
where T,=¢"t. And the time derivatives be-

come
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d/dt=Dy+ Dy + €Dy + -+,
d*/de = Dy + 26'DyDy + (2D D, + DFY + (11)
where D, = 3/0T,. Substituting Eq.(10) and
(11) into Eq.(9) and equating coefficients of

like powers of ¢ yields

Diug + wliu =0, (12)
Diugy + g = —2DsDyuge — 22 Dgtng
—ﬂé?fmu,o[exp(i.QTo) +c.c ], (13)
and
Diuny + @ity = ~ 2DoDottng — Dittag — 2Ds Dyt
—BEZ fuualexp(@TY) +c. c. ], (14)

where c. ¢. represents the compex conjugate.
The general solution of Eq. (12) can be
expressed in the complex form
U = ATy, T2) exp(iw.Tp) +c. c. (15)
Then, Eq. (13) become
Doy + @fun = — 2iwn(DiA, + 1A,) exp(iv,Tr)
—BEZ fuAdexpli(w+2)To]
+ expli(w,~2)To]} +c. c.. (16)
Form the above equation, A. is to be chosen
in such a way as to eliminate the secular terms.
(Case 1) Qis away from w, & w,
The secular terms will be eliminated from u,
if
DA, + 2tA, =0, or
A, = aexp(—£aTY), for all n. Q17
Therefore, a particular solution of Eq. (10)

can be obtained as follew :

o expli(w,+2)T,]
unl‘ﬂf2fmAr{ (wr+g)2_w:
expli(w,—2)To]

(0,—2)— i

(Case I ) 2 is near w, + w,

}

By introducing the detuning paraameter o,

2 =w, + w, + €0, (18)
we can express (2—w,) Tv as w,Tyo+ ¢T: and
(2-w,) Ty as w,Ty+0oT.. From Eq. (16) the
secular terms are eliminated from u, and uy if
2iwy(DiA, + fA,) + BEfAq exp(ioT) =0 (19)

and

[}

KREBEARBRERCHE $284% 19 19914 4R

2iw( DiAq + fi4s) + Befods exp(ioT)) =0 (20)
Eq.(19) and (20) admit nontrivial solutions
having the form
A, = g, exp(—iAT;) and A, = a, exp[i(1+0)T}],

(21)
where
A= —0.5[0 + 2if & (*—A,0)"], (22)
A= ﬂg_ﬁ&fﬂ’_ (23)

Wy,

From Eq. (21), to get the bounded value of
A, and A, 2 must be real. Therefore, the tran-
sition curves can be defineded by

(5/95‘\)2 __f_pwép_ —1]

Q = w,+ w, = 2u[—

.97, WyWq
+ 0(&%) (24)
such that
(B fufo _1 5
4 ww,

In this paper we shall construct stability re-
gions in the 2/2w; vs ¢ plane with increasing
viscouse damping u, so that we express Eq.
(24) having the form :

2 Wyt w,y M 2 B fufe 1
A + Lop L dwmle g
2w, 2wy T 4w & 48wy, 1]

+ 0(e?) (25)

{Case ) 2 is near w,—w,

In this case the results can be obtained from
those above by simply changing the sign of w,.
For this case unstable solutions occur only when
[ and fy, have different signs. The transition

curves can be obtained of the form :

2 Wp— Wy M B fufw
—— = =B [ e L SRR U2
2w, 2w, T 4w [=¢ 418 wyw, 1
+ O(e?) (26)
such that
LB fufe
4u Wy,

3.2 Numerical Method

The numerical method to construct the stab-
ility chart 1s based on the Floquet—Liapunov
theorem for a system of linear differential
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equations with periodic coefficients. In order to
describe this method briefly, let’s consider a dy-
namic system whose equation of motion is de-

scribed as the form :

.. k
u + Z,:f,'j(t) u;=0,1=1, 2, -, k 27)
fs

where fi(t+ T) = f;(1). It is convenient to
express Eq. (27) as a set of 2k first order differ-
ential equations by defining state vectors :

Xn = Upy =1, 2, eorerr , k

Xn =u,, N=k+1, k+2, coeere , 2k (28)
Hence Eq. (27) can be written in the compact
form :

{z(0)} = [A(D) ] {x(D} (29)
where {x} isa (nx1) vector and [A(t)]isa (n
X n) matrix continuous in time, and periodic
with period T but generally nonsymmetrical.
Then, it is well known fact that the fundamen-
tal matrix [¢(#)] have the following relation :

(et + D1 =[as(]1[C], (30)
where the matrix [C] is sometimes referred to
as the monodromy matrix of the fundamental
matrix [¢(D)].

Substituting the equation, t = 0, into Eq. (30)
yields

{o(D]=[p(®]LCI (31)

(1) Evaluation of the Transition Matrix

Letting [¢(0)] =[], [C]=[¢ (D] Then
[C] is constructed by numerically solving n IVP
of Eq. (31) with the initial condition x;(0) = §;.
Above method involves = numerical in-
tegrations, so it requires a considerable amount
of computation. To overcome this sort of de-
fficiency, the efficient numerical scheme which
consists of single integration pass was proposed
by Friedmann, et. al. [12].

This numerical itegration scheme of evalu-
ating [¢(7)] is based on the fourth order

Runge— Kutta numerical scheme with Gill’s co-
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efficients. The calculation procedure of [¢(7)]

can be summarized as follows :

[6(D] = (I IK(T = nh)] (32)
where h is the stepsize calculated by T/N and
[K(1)] = [0+ ¢{TA®)]

+2(1-1/V2)[E®)]
+2(1+1/4/2)[F(x)]1+ [G(1.)1}(33)
[E(2)]=[A(:+0.5r)1([1]+0.5R[ A(2:)]) (34)
[F(&)]1=[AG+05R) ([]+(1/¥2Z —05)
RLA(8)1+ (1-1/4/2)R[E(1)]) (35)
[G(t)] =[AG+h [N+ (h/V2)[E1)]
+ (1+1/4/2 Yh[F(5)]) (36)

(2) Stability Criterion

Inroducing the transformation

[¢(D)] = [¢(n)] [B] (37)
where [B] is a constant nonsingular matrix. In-
troducing Eq. (37) into (30) and post-
multiplying the result by [ B], we obtain

[¢(t+ 7] = [¢()][B]'[CILB] (38)

Since the matrix [B]™' [CI[B] is similar to
the matrix [C], we conclude that the solutions
of Eq(29) are asymptotically stable as t — oo if
the modulus of the eigenvalues of [C] are all
less than unity, bounded for all ¢ if all of them
are unity and unbounded as t— oo if any of
them are greater than unity. The eigenvalues of

[C] is often called the characteristic multipliers.

(3) Modification of the Stability Criterion for
the Numerical Computation

Let’s examine the behavior of [¢(#)] as time
increases.  Theoretically,  Floquet —Liapnov
theorem says that

If | 2;1 > 1, then Unbounded solution.

If | 4,1 =1, then Neutrally stable solution.

If | 2;] < 1,then Asymptotically stable sol-
ution.

However, there is some difficulty in numerical
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computation to find the characteristic multiplier
whose modulus is exactly one. This motivates us
to modify the stability criterion as follows :

If | 2;] > 14¢™, then Unbounded solution.

fl—e™< | 2;| <1+ then Neutrally
stable solution.

If | 2] <1l-—g™, then

stable solution.

Asymptotically

The suggested way to select the error bound
= from the numerical experience can be stated
as follows :

First, choose the error bound ¢ in order not
to have any asymptotically stable solutions in
an undamped system. Then, use this value in
the damped system.

4. Results and Discussions

To make comparisions between the per-
turbation method and the numerical method, the
following examples whose results may be avail-
able in the literature are selected : The columns
with four different boundary conditions, and
subjedted to a periodic axial force P(t) = P, cos

2t
=
z
s% et
7 O -
-

{a) Characteristic Multiplier  (b) Characteristic exponent

y 7

(c) Modiffications of stability criteria

Fig. 2 Relationship between stability and the
location of the characteristic multipliers
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Fig. 3 shows the instability regions of a
simply supported columns. Fig. 3(a) is the re-
sult by perturbation method and Fig. 3(b) is the
result by the numerical method. In the figures
P/P. (=¢) is taken as the ordinate and £/2w,
is taken as the abscissa. It is noted that the
value of Py is different for different boundary
conditions. The solid line in Fig. 3(a) shows the
transition curve seperating stability from in-
stability. Inside these lines and the marked re-
gions in Fig. 3(b) the response of the beam in-
creases and becomes unbounded with an in-
crease of time. The symbol (p), p=1, 2, 3, 4,
implies the parametric resonance of the p®

mode. From this figure, we can find that any

»
L]

Y 2 1€

o ) S 1 AN SN S 1
01 2 38 4 56 6 7 B & 10

Q/2w,

(a) Perturbation

(b) Numerical simulation

Fig. 3 Instability regions of a simply supported
column under the parametric excitation
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combination resonance does not occur and only
the parametric resonances £ =~ 2w,, (p=1, 2,
-«+) occur. This is due to the fact that the inte-
gral of Eq. (7a) is identically zero except for n
= m, and Eq. (7) become decoupled.

Fig. 4 shows the instability regions of a
clamped —free colurr;n. While for a simply sup-
ported column only parametric resonances
oceur, in this case not only the parametric re-
sonances but also the combination resonances
such that @ > w—w), L~ w;—w;, 2= wi—w;
and 2 =~ w;+w occur. It is noted that the re-
gions of the first and fourth regions of combi-

nation resonance in the figure are far more

g (D (2= (8—-2) 8+1)

2)

(4-3)

S 456 6 7 8 9 10
0/2e,

(a) Perturbation

(-]
-
N

- . o s oo o o ..
5[ : 3 s s rndiidn mbde4 pddrba s a1
- bt sene
. - oy
. - somoce poae .
4&- ses sedesee o .
PRpe & 594 .os .
o o doooodmone
eee oupups o
.. L $ sodmone wves .
Q‘tS" pops spasd aveseguocae oo .
. .
confeacce
pecosasconse
eonempe
cofmosee
oo 0 ¢ taun 0 ¢ 4 0 0 ¢ aofuinene
.

-----

T DR
7T 8 8 .10

(b) Numerical simulation

Fig. 4. Instability regions of a clamped —free column
under the parametric excitation
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dominant than the regions of the parametric re-
sonances.

Fig. 5 shows the instability regions of a
clamped —simply supported column. Combi-
nation resonances of sum type such as 2 =~ w,+
we(p, @=1, 2, --- and p#q) are all possible but a
difference type of combination resonance of
such as @ ~ w,—w, is not possible. The domi-
nance of the combination resonances is very
weak relative to that of the parametric re-
sonances.

Fig. 6 shows the instability regions of a
clamped —clamped column. It is noted that the

types of combination resonances are same as

(1+2) (1+3) (4+1) (4+3)

(2+3)
(442)

(2) )

3 4 66 7 8 9 10
Q/2a,

(a) Perturbation

. o mpte sone

b8 el s 143 nbbdn vt & bl sy n e s
Ge oo aim s ee o smuie oooe s onhs gujns e
-o--o--:----:;o—--o-
e =tid
Q= cecersecsscascscesscssessrcersrssesntatennrsrranes

| S VR NN AU (SO SN SN SN R N
0 1 2 3 4 5 6 7 B8 & 10

Q/2w,

(b) Numerical simulation

Fig. 5 Instability regions of a clamped simply su-
pported column under the parametric excitation
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those of the clamped —simply supported column
and their dominance is so weak that there is
some difficulty to find them in the numerical
result.

It is noted that, regadless of boundary con-
ditions, the system may be stable even though
the excitation amplitude is five times the Euler
static buckling load corresponding to boundary
conditions in some excitation frequency. In dy-
namic stability, if the parametrically exciting
frequency is far from resonant condition, this

phenomena can be occured.

From the numerical experience, the following
state can be made :

). (1+3) ) _{9e4)

(2+3)

14
)
i)
z

Q/2¢w,

(a) Perturbation

[N UL SRS AU FNN SRR WUINN SN B S
0 1 2 83 4 6 6 7 8 9 10

/2,

(b) Numerical simulation

Fig. 6 Instability regions of a clamped —clamped
column under the parametric excitation

KEGEABERCE FH28H 14 199145 4A

The instability regions found by both methods
are generally in good agreement, provided that
the proper error bound be selected as suggested
in this paper. However, there are some differ-
ences between the two.

(1) In the case of nearly static excitation, the
result of the numerical method shows unstable
solution when P,/P. is greater than 1, while
that of the perturbation does not. In this region,
we have to note that the validity of the per-
turbation method must be checked.

(2) As mentioned ealier, in the results of the
perturbation method, we may even find the in-
stability regions which are as weak or narrow
as a single line, but in the result of the numeri-
cal method there is some difficulty to find the
corresponding regions.

But, there is a big advantage to use numeri-
cal method even in the case of the large periodic
load.

® The effects of viscous damping

Fig. 7(a) —(e), which are obtained by the nu-
merical method, show that the effects of viscous
damping on the instability regions of simply
suported column. The dimensionless damping co-
efficient used in this figures are (a) u=1, (b)
#=3, (¢) #=5, (d) =7 and (e) u=9. Fig.7(f)
is the result obtained from Egs. (25) and (26)
by the perturbation method.

According to a literature[1], the damping
may destablize the system when modal damping
is assumed and following condition is satis-
fied :

A < dpppr g+ 1) (g — 1) 72, (39)
where g, is p* modal damping. However, in the
case of constant viscous damping, it has the ef-
fects of stablizing the system. Also it has a

trend to lift up and reduce the instaility regions.
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Fig. 8 Effects of mean tension on the instability regions of a simply supported column —by numerical method
(a) 6=075 (b)) 6 =05 (c) 6 =025 {d) 0 = —0.25 {e) 6 = —0.75 (f) 0= —1.25
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Fig. 9 Effects of mean tension on the instability regions of a simply supported column—by perturbation me-
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® The effects of mean tension

Fig. 8 and 9 show the variations of instability
regions with changing direction and incresing
magnitude of mean tension, which are obtained
by numerically and analytically. The mean ten-
sion parameters, ¢ { =PF,/P.) used here are (a)
0=0.25, (b) 6=0.5 (c) 0=0.75, (d) o= —0.25,
(e) 6=—0.75 and (f) o=—1.25, where the
positive sign represents that the mean force is
compressive force and the negative one re-

presents that the mean tension is tensile force.
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Fig. 10 Effects of multi—frequency input on the
instability regions of a simply supported column,
(a) P(1) = Pi(cos 2t+cos 2t)
(b) P(t) = Pi(cos 2t+cos 22t)

KRESER RO $28% 198 19914 45

We can see that the position eminating in-
stability regions are varying with changing di-
rection and magnitude of mean tension. While
the system becomes more stable when the ten-
sion 1s applied, the system becomes more un-
stable when the compressive force is applied.
This is because the natural frequencies increase

with the increase of mean tension.

(® The effects of multi—frequency excitation

We can find the exciting period T of the multi
—frequency excitation, unless one of the
excitation frequencies is not a rational number.
Then, we can use numerical method to calculate
the transition matrix.

Fig. 10 shows the instability regions of a
simply supported column subjected to a periodic
tangential multi—frequency excitation. Fre-
quencies used in this example P(t) = Pi(cos@t
+cosf,t) are (a) 2,=2 and £2,=32 and (b) 2,
=0 and £2,=22. Fig. 10 (a) shows the unstable
regions when the value £/2w,, is equal to 1/3,
1, 4/3, 3, 4, 16/3, 9 etc. Also Fig. 10 (b) shows
the unstable regions when the value £/2w, is
equal to 1/2, 2, 4, 9/2, 8, 9 etc. In this example,
there 1s no combination resonance and only the
parametric resonance occurs. There-fore, each
parametric excitation affects the stability of the

system separately.

5. Conclusions and Recommendations

From the analytical and numerical results,
the following conclusions can be made :

(1) The accuate stability boundary can be ob-
tained by using the perturbation method when
the parametric excitation is relatively small
However, the numerical method can be
effectively used to obtain the stability chart
even in the case of the large parametric

excitation and the multi—frequency excitation,
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provided that the proper error bound be selected
as suggested in the present paper.

(2) The constant viscous damping has the ef-
fect of stabilizing the system, such that it has a
trend to lift up and reduce the unstable regions.

(3) The mean tension has the effect to stabil-
izing the system, while the mean compressive
force does not. Due ta the change of the natural
frequencies of the system, the unstable regions
shift and change their area according to the
magnitude of the mean tension.

(4) The results of the present work can be di-
rectly applicable to the dynamic stability analy-
sis of the supporting leg of Tension Leg plat-

forms.
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