• Title/Summary/Keyword: peptone

Search Result 562, Processing Time 0.025 seconds

Formulations of Bacillus thuringiensis Insecticides by Liquid and Semi-Solid Fermentations. (액상 및 반고체배지 발효에 의한 Bacillus thuringiensis 살충제의 제조)

  • 이형환
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.369-372
    • /
    • 1998
  • Microbial insecticide formulations were prepared by liquid and semi-solid fermentations using Bacillus thuringiensis subsp. kurstaki, HL-106 (BTK-HL106), B. thuringiensis subsp. israelensis HL-63 (BTI-HL63) and B. sphaericus 1593 (BS-1593) strains. The liquid fermentation medium contained molasses 2%, dextrose 1.5%, peptone 2%, D-xylose 0.025%, CaCl$_2$ 0.1%, K$_2$HPO$_4$ 0.1%, KH$_2$PO$_4$ 0.1%, MgSO$_4$$.$7H$_2$O 0.03%, FeSO$_4$$.$7H$_2$O 0.002%, ZnSO$_4$$.$7H$_2$O 0.02%. The composition of the semi-solid fermentation medium was rice bran 45.2%, zeolite 31%, yeast powder 0.02%, corn powder 5%, dextrose 3%, lime 0.3%, NaCl 0.06%, CaCl$_2$ 0.02%, and H$_2$O 15.42%. Insecticide formulations produced in the liquid fermentation named BTK-HL106, BTI-HL63 and BS-1593 pesticides and those in the semi-solid fermentation were designated as BTK-HL106-1, BTI-HL63-1 and BS-1593-1 pesticides, respectively. The number of spore (endotoxin crystals) was 2.65${\times}$10$\^$9/ spores per $m\ell$ in the BTK-HL106 and 3.5${\times}$10$\^$10/ in the BTK-HL106-1 3.8${\times}$10$\^$9/ spores in the BTI-HL63 and 7.0${\times}$10$\^$10/ in the BTI-HL63-1, and 7.5${\times}$10$\^$9/ in the BS-1593 and 1.4${\times}$10$\^$10/ in the BS-1593-1. The spores in the BS-1593 formulation was produced two times more than the other formulations. The spores in the BTI-HL63-1 were contained twice than those in the BTK-HL106-1, and five times than those in the BS-1593-1. The results indicated that spore (endotoxin crystals) productions in the semi-solid fermentation increased about ten times than those in the liquid fermentations. $LC_{50}$s of the BTI-HL63 and BS-1593 were 4.5 $\mu\textrm{g}$, and those of the BTI-HL63-1 and BS-1593-1 were 1.5 $\mu\textrm{g}$. $LC_{50}$ of the BTK-HL106 was 1.5 mg and that of the BTK-HL106-1 was 0.9 mg. The $LC_{50}$s of the formulations in the semi-solid fermentations showed about two to three times higher than those in the liquid fermentations.

  • PDF

Rapid and Specific Detection of Virulent V. vulnificus in Tidal Flat Sediments (갯벌 퇴적물내 병원성 Vibrio vulnificus의 신속하고 특이적인 검출)

  • Byun Ki-Deuk;Lee Jung-Hyun;Lee Kye-Joon;Kim Sang-Jin
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.168-176
    • /
    • 2005
  • Vibrio vulnificus, one of the marine bacterial pathogens causing septicemia, was detected using molecular methods, namely, PCR and/or Southern hybridization, and real-time PCR. Extracted and purified total DNAs by using commercial kits were used as templates for PCR. Multiplex-PCR was conducted by employing three sets of primers for the genes, hemolysin (vvhA), phosphomannomutase (pmm), and metalloprotease (vvpE), for V vulnificus virulence. The presence of DMSO ($5\%$) and BSA ($0.1\%$) in PCR reaction mixture improved a detection efficiency by higher PCR band intensities. TaqMan real-time PCR was carried out by using gene segment of vvhA as a target. Detection limit of PCR/Southern hybridization without enrichments was to be around $10^2\;cells\;g^{-1}$ of sample. However, those three methods using the enrichment at $35^{\circ}C$ in APW showed high sensitivity ($2\~10\;cells\;g^{-1}$ of sediments). Highly sensitive detection of V vulnificus by real-time PCR was achieved within $5\~6$ hr, whereas the detection by PCR/Southern hybridization required about 36 hr. Thus, it was evident that real-time PCR is the most rapid and efficient method for detecting V vulnificus in tidal flat sediments.

Screening of Anti-inflammatory Compound-producing Wild Yeasts and Their Microbiological Characteristics (항염증 물질 생산 능력이 우수한 야생효모의 선별 및 이들의 균학적 특성)

  • Bae, Sang-Min;Han, Sang-Min;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.45 no.3
    • /
    • pp.212-223
    • /
    • 2017
  • To screen for potent anti-inflammatory compound-producing yeasts, we evaluated nitric oxide production inhibitory activities in RAW 264.7 macrophage cells using cell-free extracts from 182 non-pathogenic yeasts. Rhodotorula graminis YJ36-1 and Meyerozyma guilliermondii YJ34-2 showed high inhibitory activities of 57.4% and 47.0%, respectively. The microbiological characteristics of these yeasts were investigated. Rhodotorula graminis YJ36-1 formed ascospores and pseudomycelium. This species grew well at $25^{\circ}C$ in yeast extract-peptone-dextrose (YPD) medium, vitamin-free medium, and 5% NaCl-containing YPD medium. Meyerozyma guilliermondii YJ34-2 was an asporogenous yeast and did not form pseudomycelium. This strain also grew well at $30^{\circ}C$ in YPD medium, vitamin-free medium, and 5% NaCl-containing YPD medium.

Optimum cultivation conditions for mass production of antagonistic bacterium Pseudomonas azotoformans HC5 effective in antagonistic of brown blotch disease caused by Pseudomonas tolaasii (버섯 세균갈색무늬병균(Pseudomonas tolaasii)에 대한 길항세균 Pseudomonas azotoformans HC5의 대량배양을 위한 최적 배양조건)

  • Lee, Chan-Jung;Moon, Ji-Won;Yoo, Young-Mi;Han, Ju-Yeon;Cheong, Jong-Chun;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.13 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • This study was conducted to investigate optimum conditions for mass production of antagonistic microbes Pseudomonas azotoformans HC5. P. azotoformans HC5 is a potent biological control agent to control brown blotch disease caused by Pseudomonas tolaasii. This markedly showed the antagonistic activity against P. tolaasii, the most destructive pathogen of cultivated mushrooms. To define the optimum conditions for the mass production of the P. azotoformans HC5, we have investigated optimum culture conditions and effects of various nutrient source on the bacterial growth. The optimum initial pH and temperature were determined as pH 6.0 and $15^{\circ}C$, respectively. The optimal concentration of medium elements for the growth of pathogen inhibitor bacterium was determined as follows: 0.6% adonitol, 1.5% yeast extract, 0.8% $NH_4H_2PO_4$, 5mM $MgSO_4$, and 0.2% asparagine.

Optimum cultivation conditions for mass production of antagonistic bacterium Alcaligenes sp. HC12 effective in antagonistic of browning disease caused by Pseudomonas agarici (버섯 세균성회색무늬병균(Pseudomonas agarici)에 대한 길항 세균 Alcaligenes sp. HC12의 대량배양을 위한 최적 배양조건)

  • Lee, Chan-Jung;Moon, Ji-Won;Cheong, Jong-Chun
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.191-196
    • /
    • 2016
  • This study was conducted to investigate optimum conditions for mass production of ntagonistic microbes Alcaligenes sp. HC12. Alcaligenes sp. HC12 had a potent biological control agent to control browning disease caused by Pseudomonas agarici. Alcaligenes sp. HC12 markedly showed the antagonistic activity against Pseudomonas agarici, the most destructive pathogen of cultivated mushrooms. To define the optimum conditions for the mass production of the Alcaligenes sp. HC12, we have investigated optimum culture conditions and effects of various nutrient source on the bacterial growth. The optimum initial pH and temperature were determined as pH 9.0 and $30^{\circ}$, respectively. The optimal concentration of medium elements for the growth of pathogen inhibitor bacterium(Alcaligenes sp. HC12) was determined as follows: 0.5% dextrine, 1.5% yest extract, 1.0% $NaNO_3$, 0.5% $KH_2PO_4$, and 1.5% asparagine.

Antimicrobial Efficacy of Fermented Dark Vinegar from Unpolished Rice (현미 발효 흑초의 항균활성)

  • Choi, Hakjoon;Gwak, Gyeongja;Choi, Dabin;Park, Jaeyoung;Cheong, Hyeonsook
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • Vinegar is a widely used acidic seasoning and can be manufactured using various methods and bases, including cereals, wheat, and fruits. Most studies on vinegar have been conducted to evaluate its antioxidant activity. In the present study, fermented dark vinegar (FDV) produced from unpolished rice was examined for its antimicrobial activity, biochemical content, including the amounts of sugar, total soluble sugar, organic acid, and free amino acids, and pH and physiological activity. The antimicrobial efficiency of FDV was assessed using the paper disc-agar diffusion method. FDV exhibited strong antimicrobial activity against the pathogenic bacteria and yeast strains that were tested. In fact, the activity of FDV was shown to be higher than that of the commercial antibiotics carbenicillin (50 µg/ml) and tetracycline (50 µg/ml) against Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Yersinia enterocolitica, and Lodderomyces elongisporus. The antioxidant activity of FDV and ascorbic acid was evaluated. Using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method, we found that FDV has the highest activity of the antioxidants. After spreading FDV onto tryptic soy broth and yeast extract-peptone-dextrose agar media, the microbial strains were isolated and characterized through physiological and biochemical analysis. Based on 16S ribosomal DNA sequence analysis, the isolated microorganisms exhibited a close similarity to Acetobacter papayae, Acetobacter pasteurianus, and Acetobacter peroxidans.

Isolation and Characterization of an Agar-hydrolyzing Marine Bacterium, Pseudoalteromonas sp. H9, from the Coastal Seawater of the West Sea, South Korea (서해안 해수로부터 분리한 한천분해 해양미생물 Pseudoalteromonas sp. H9의 동정 및 특성 연구)

  • Chi, Won-Jae;Youn, Young Sang;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2015
  • An agarolytic marine bacterium (H9) was isolated from the coastal seawater of the West Sea, South Korea. The isolate, H9, was gram-negative and rod-shaped with a smooth surface and polar flagellum. Cells grew at 20-30℃, between pH 5.0 and 9.0, and in ASW-YP (Artificial Sea Water-Yeast extract, Peptone) media containing 1-5% (w/v) NaCl. The G+C content was 41.56 mol%. The predominant isoprenoid quinone in strain H9 was ubiquinone-8. The major fatty acids (>10%) were C16:1ω7c (34.3%), C16:0 (23.72%), and C18:1ω7c (13.64%). Based on 16S rRNA gene sequencing, and biochemical and chemotaxonomic characterization, the strain was designated as Pseudoalteromonas sp. H9 (=KCTC23887). In liquid culture supplemented with 0.2% agar, the cell density and agarase activity reached a maximum level of OD = 4.32 (48 h) and OD = 3.87 (24 h), respectively. The optimum pH and temperature for the extracellular crude agarases of H9 were 7.0 and 40℃, respectively. Thin-layer chromatography analysis of the agarase hydrolysis products revealed that the crude agarases hydrolyze agarose into neoagarotetraose and neoagarohexaose. Therefore, the new agar-degrading strain, H9, can be applicable for the production of valuable neoagarooligosaccharides and for the complete degradation of agar in bio-industries.

Identification and Growth Activity to Bifidobacterium spp. of Locust Bean Gum Hydrolysates by Trichoderma harzianum ${\beta}$-mannanase (Trichoderma harzianum 유래 ${\beta}$-mannanase에 의한 Locust Bean Gum 가수분해 올리고당의 동정 및 Bifidobacterium spp.에 대한 생육활성)

  • Kim, Yu-Jin;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.364-369
    • /
    • 2005
  • This study was performed to elucidate substrate specificity to the locust bean gum galactomannan by Trichoderma harzianum ${\beta}-mannanase$. The medium composition for enzyme production were determined 3% cellulose, 3% corn steep liquor, 1% $KH_2PO_4$, 0.2% $(NH_4){_2}SO_4$, and incubated for 115 hr at $28^{\circ}C$. The ${\beta}-mannanase$ exhibited maximum activity at pH 4.5 and $60^{\circ}C$. Locust bean gum galactomannan was hydrolyzed by the ${\beta}-mannanase$, and then hydrolysates separated by activated carbon column chromatography. The main hydrolysates were composed of D.P 4 and 7 galactosyl mannooligosaccharides by TLC. For the elucidate the structure of D.P 4 and 7 oligosaccharides, methylation analysis was performed. D.P 4 and 7 were identified as M-M-M-M and M-M-M-M-M (G- and M-represent ${\alpha-1,6-D-galactosidic\;and\;{\beta}-1,4-mannosidic$ linkages, respectively). //G-G To investigate the effects of locust bean gum galactosyl mannooligosaccharides on the in vitro growth of B. longum, B. bifidum, B. infantis, and B. breve, Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P 4 and 7 galactosyl mannooligosaccharides, respectively. B. longum grew up 3.4-fold and 4.3-fold more effectively by the replacement of D.P 4 and 7 galactosyl mannooligosaccharides as the carbon source in a comparasion of standard MRS.

Effects of Sample Preparation Methods for the Isolation of Foodborne Pathogens from Sprout Seeds (새싹채소 종자의 전처리 방법이 식중독 세균 검출에 미치는 영향)

  • Kim, Won-Il;Kim, Sun Young;Kim, In-Seon;Han, Sanghyun;Kim, Se-Ri;Yun, Bohyun;Ryu, Jae-Gee;Kim, Hyeon-Ju
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.465-470
    • /
    • 2016
  • Sample preparation methods were evaluated for effectiveness in detecting foodborne pathogens from sprout seeds. The methods included: Rinse.-Test portions were rinsed with 0.1% peptone water, and the pellet after centrifugation was inoculated into pre-enrichment media; and Sprouting.-Seed samples were sprouted before pre-enrichment and sprouted seeds were inoculated into pre-enrichment media. In rinse method, E. coli was isolated from 13 of 280 sample units. In sprouting method, E. coli was isolated from 12 of 135 sample units. E. coli O157:H7, Salmonella spp., and L. monocytogenes were not detected in any of the samples. In the trials for recovering Salmonella enterica from artificially contaminated alfalfa seeds, the soak, rinse, and sprouting methods were evaluated. The detection rates of S. enterica were statistically different according to the amount of the sample tested and selective medium type (P < 0.05).

Purification and Characterization of Phospholipase D from Actionmycetes KF923 (방선균 KF923이 생산하는 Phospholipase D의 정제 및 특성)

  • 곽보연;윤석후;김창진;손동화
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.78-83
    • /
    • 2004
  • In order to screen microorganisms producing phopholipase D (PLD) had high transphosphatidylation activity, about 1,000 Actinomycetes strains were isolated from the 63 soil samples, collected over 6 local area in Korea. When the hydrolytic activity in the supernatant was determined, 131 strains produced PLD more than 0.3U/$m\ell$. Among 131 culture broths tested, 23 ones had transphosphatidylation activity higher than 20% and finally one strain (Actinomycetes KF923), which had highest hydrolytic and transphophadylation activity, was selected. Actinomycetes KF923 showed the highest hydrolytic activity (13U/$m\ell$) and phosphatidylation activity (95%) after 48 h fermentation using the P medium (yeast extract 1%, peptone 1%, glucose 1.5%, glycerol 1%, $CaCO_3$ 0.4%, pH 7.2). PLD was purified from the culture broth of Actinomycetes KF923 and the specific activity of purified PLD was 567U/mg. The molecular weight of PLD was about 55kD and the optimum pH and temperature were pH 6.0 and $60^{\circ}C$, respectively. The stability of PLD toward pH and temperature were high around pH 8.0 and below $40^{\circ}C$ Special metal ions were not necessary to the PLD activity.