Browse > Article
http://dx.doi.org/10.4014/mbl.1503.03003

Isolation and Characterization of an Agar-hydrolyzing Marine Bacterium, Pseudoalteromonas sp. H9, from the Coastal Seawater of the West Sea, South Korea  

Chi, Won-Jae (Biological and Genetic Resource Assessment Division, National Institute of Biological Resource)
Youn, Young Sang (Department of Biological Science, Myongji University)
Kim, Jong-Hee (Department of Food and Nutrition, Seoil University)
Hong, Soon-Kwang (Department of Biological Science, Myongji University)
Publication Information
Microbiology and Biotechnology Letters / v.43, no.2, 2015 , pp. 134-141 More about this Journal
Abstract
An agarolytic marine bacterium (H9) was isolated from the coastal seawater of the West Sea, South Korea. The isolate, H9, was gram-negative and rod-shaped with a smooth surface and polar flagellum. Cells grew at 20-30℃, between pH 5.0 and 9.0, and in ASW-YP (Artificial Sea Water-Yeast extract, Peptone) media containing 1-5% (w/v) NaCl. The G+C content was 41.56 mol%. The predominant isoprenoid quinone in strain H9 was ubiquinone-8. The major fatty acids (>10%) were C16:1ω7c (34.3%), C16:0 (23.72%), and C18:1ω7c (13.64%). Based on 16S rRNA gene sequencing, and biochemical and chemotaxonomic characterization, the strain was designated as Pseudoalteromonas sp. H9 (=KCTC23887). In liquid culture supplemented with 0.2% agar, the cell density and agarase activity reached a maximum level of OD = 4.32 (48 h) and OD = 3.87 (24 h), respectively. The optimum pH and temperature for the extracellular crude agarases of H9 were 7.0 and 40℃, respectively. Thin-layer chromatography analysis of the agarase hydrolysis products revealed that the crude agarases hydrolyze agarose into neoagarotetraose and neoagarohexaose. Therefore, the new agar-degrading strain, H9, can be applicable for the production of valuable neoagarooligosaccharides and for the complete degradation of agar in bio-industries.
Keywords
Agarase; marine bacterium; Pseudoalteromonas sp. H9; phylogenetic analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
2 Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acid. Hewlett-Packard Application note. pp. 228-241.
3 Oh YH, Jung C, Lee J. 2011. Isolation and characterization of a novel agarase-producing Pseudoalteromonas spp. bacterium from the guts of spiny turban shells. J. Microbiol. Biotechnol. 21: 818-821.   DOI
4 Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Kikhailov VV, Stackebrandt E. 2003. Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol. 53:125-131.   DOI
5 Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.
6 Suzuki MT, Giovannoni SJ. 1996. Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630.
7 Venkateswaran K, Dohmoto N. 2000. Pseudoalteromonas peptidolytica sp. nov., a novel marine mussel-thread-degrading bacterium isolated from the Sea of Japan. Int. J. Syst. Evol. Microbiol. 50: 565-574.   DOI
8 Vera J, Alvarez R, Murano E, Slebe JC, Leon O. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Envrion. Mirobiol. 64: 4378-4383.
9 Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, et al. 2013. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 97:2961-2970.   DOI
10 Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
11 Gauthier G, Gauthier M, Christen R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding four small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45: 755-761.   DOI
12 Ivanova EP, Chun J, Romanenko LA, Matte ME, Mikhailov VV, Frolova GM, et al. 2000. Reclassification of Alteromonas distincta Romanenko et al. 1995 as Pseudoalteromonas distincta comb. nov. Int. J. Syst. Evol. Microbiol. 50: 141-144.   DOI
13 Ivanova EP, Romanenko LA, Matté MH, Matté GR, Lysenko AM, Simidu U, et al. 2001. Retrieval of the species Alteromonas tetraodonis Simidu et al. 1990 as Pseudoalteromonas tetraodonis comb. nov. and emendation of description. Int. J. Syst. Evol. Microbiol. 51: 1071-1078.   DOI
14 Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163.   DOI
15 Ma C, Lu X, Shi C, Li J, Gu Y, Ma Y, et al. 2007. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J. Biol. Chem. 282: 3747-3754.
16 Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167.   DOI
17 Chan KY, Baumann L, Garza MM, Baumann P. 1978. Two new species of Alteromonas: Alteromonas espejiana and Alteromonas undina. Int. J. Syst. Bacteriol. 28: 217-222.   DOI
18 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
19 Akagawa-Matsushita M, Matsuo M, Koga Y, Yamasato K. 1992. Alteromonas atlantica sp. nov. and Alteromonas carrageenova sp. nov., bacteria that decompose algal polysaccharides. Int. J. Syst. Bacteriol. 42: 621-627.   DOI
20 Al Khudary R, Stösser NI, Qoura F, Antranikian G. 2008. Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int. J. Syst. Evol. Microbiol. 58: 2018-2024.   DOI
21 Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930.   DOI
22 Chi WJ, Lee CR, Dugerjonjuu S, Park JS, Kang DK, Hong SK. 2015. Biochemical characterization of a novel iron-dependent GH16 β-agarase, AgaH92, from an agarolytic bacterium Pseudoalteromonas sp. H9. FEMS Micobiol. Lett. doi: 10.1093/femsle/fnv035.   DOI