• 제목/요약/키워드: peak power

검색결과 2,628건 처리시간 0.025초

ESTIMATION OF REQUIRED CAPACITY OF SHUNT TYPE ACTIVE POWER FILTER WITH A THYRISTOR CONVERTER LOAD

  • Jeong, Seung-Gi;Kim, Dong-Ha
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.802-807
    • /
    • 1998
  • The main drawback of parallel type active power filters (APF) is the large capacity required for harmonic compensation. This paper evaluates the APF capacity requirement of harmonic/reactive power compensation for thyristor converter load. Theoretically achievable maximum power factor under partial load is evaluated. And it is shown that the APF capacity can be considerably reduced while slightly sacrificing the filtering performance by deliberately limiting the peak current of the APF.

  • PDF

A 10-bit 10MS/s differential straightforward SAR ADC

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Lee, Dong-Soo;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권3호
    • /
    • pp.183-188
    • /
    • 2015
  • A 10-bit 10MS/s low power consumption successive approximation register (SAR) analog-to-digital converter (ADC) using a straightforward capacitive digital-to-analog converter (DAC) is presented in this paper. In the proposed capacitive DAC, switching is always straightforward, and its value is half of the peak-to-peak voltage in each step. Also the most significant bit (MSB) is decided without any switching power consumption. The application of the straightforward switching causes lower power consumption in the structure. The input is sampled at the bottom plate of the capacitor digital-to-analog converter (CDAC) as it provides better linearity and a higher effective number of bits. The comparator applies adaptive power control, which reduces the overall power consumption. The differential prototype SAR ADC was implemented with $0.18{\mu}m$ complementary metal-oxide semiconductor (CMOS) technology and achieves an effective number of bits (ENOB) of 9.49 at a sampling frequency of 10MS/s. The structure consumes 0.522mW from a 1.8V supply. Signal to noise-plus-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 59.5 dB and 67.1 dB and the figure of merit (FOM) is 95 fJ/conversion-step.

전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템 (A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring))

  • 남석현;이수길;홍진영;김정년;정성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

Slot형 구리 이온 레이저 (Slotted type copper ion laser)

  • 송순달;홍남관
    • 한국광학회지
    • /
    • 제8권4호
    • /
    • pp.291-296
    • /
    • 1997
  • Slot형의 구리 이온 레이저를 제작하여, 780 nm 레이저 동작을 위한 장치구조의 안정성과 특성을 조사했다. 구리 이온 레이저의 최대 출력을 다양한 동작조건 범위에서 측정했다. IR-레이저의 출력은 음극의 기하학적 구조, 방전전압, 그리고 기체압력에 주로 의존했다. 네온의 부분압력이 60%에 이르면 출력이 감소하였으며, 그 이유 중에 하나는 높은 레이저 준위의 Population이 감소했기 때문이다. 파장 780 nm는 레이저 전이가 구리 이온의 5p 준위에서 일어난다. 통형음극을 사용하는 본 실험의 레이저 장치는 헬륨과 네온 흡합기체 방전에서 동작되고, 100시간 동안의 방전시간 후에 출력감소가 35%이었다(활성길이 9.6cm에 대한 출력은 2.8 mW).

  • PDF

자동차 타이어 손상에 의한 초음파 신호 주기 측정에 관한 연구 (On the Study of the Period Measurement of Ultrasonic Signal in Damaged Vehicle Tire)

  • 박정임;임승각;강대수
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권5호
    • /
    • pp.47-52
    • /
    • 2011
  • 본 논문에서는 주행 중 타이어와 노면이 마찰하면서 발생하는 초음파 신호에서 이물질로 인해 야기되는 우성주기를 검출하여 타이어 손상 유무를 판별하는 알고리즘에 대해 연구하였다. 손상된 타이어에서 획득한 초음파 신호의 포락선에 대해 전력스펙트럼을 산출하고 통계적 처리에 의한 임계값을 설정함으로써 우성주기를 판별하는 알고리즘을 제안하였다. 모의실험 결과, 시속 80km/h로 주행 시 초음파 신호의 포락선에 대해 전력스펙트럼의 피크주기 97.6ms에 비해 제안된 알고리즘의 우성주기는 100ms로서 포락선 피크의 평균주기 101.24ms를 기준으로 하였을 때 더 정확한 주기 측정 결과를 보였다.

Performance Prediction of an OWC Wave Power Plant with 3-D Characteristics in Regular Waves

  • Hong, Do-Chun;Hong, Keyyong
    • 한국항해항만학회지
    • /
    • 제36권9호
    • /
    • pp.729-735
    • /
    • 2012
  • The primary wave energy conversion by a three-dimensional bottom-mounted oscillating water column (OWC) wave power device in regular waves has been studied. The linear potential boundary value problem has been solved following the boundary matching method. The optimum shape parameters such as the chamber length and the depth of the front skirt of the OWC chamber obtained through two-dimensional numerical tests in the frequency domain have been applied in the design of the present OWC chamber. Time-mean wave power converted by the OWC device and the time-mean second-order wave forces on the OWC chamber structure have been presented for different wave incidence angles in the frequency-domain. It has been shown that the peak period of $P_m$ for the optimum damping parameter coincides with the peak period of the time.mean wave drift force when ${\gamma}=0$.

토크리플 억제와 역률개선을 위한 단상 SRM의 구동시스템 (Single-phase SRM Drive for Torque Ripple Reduction and Power Factor Improvement)

  • 안진우;양가녕
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권8호
    • /
    • pp.389-395
    • /
    • 2006
  • In the single-phase switched reluctance motor (SRM) drive, the required DC source is generally supplied by the circuit consisting of bridge rectifier with diodes and many filter capacitances connected with AC source. Although the peak torque ripple of SRM is small because of large capacity of the capacitance, the charge and discharge time swhich the AC source acts on the capacitance are small and the peak current will pass on the side of source, so power factor and system efficiency decrease. Therefore a novel SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor and switching topology. The proposed drive circuit consists of one switching part and diodes which can separate the output of AC/DC rectifier from the large capacitance and supply power to SRM alternately in order to realize reduction of torque ripple and improvement of power factor through the turn on and turn off of switching part. In addition, the validity of method is tested by simulation and experiment.

SiC Based Single Chip Programmable AC to DC Power Converter

  • Pratap, Rajendra;Agarwal, Vineeta;Ravindra, Kumar Singh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권6호
    • /
    • pp.697-705
    • /
    • 2014
  • A single chip Programmable AC to DC Power Converter, consisting of wide band gap SiC MOSFET and SiC diodes, has been proposed which converts high frequency ac voltage to a conditioned dc output voltage at user defined given power level. The converter has high conversion efficiency because of negligible reverse recovery current in SiC diode and SiC MOSFET. High frequency operation reduces the need of bigger size inductor. Lead inductors are enough to maintain current continuity. A complete electrical analysis, die area estimation and thermal analysis of the converter has been presented. It has been found that settling time and peak overshoot voltage across the device has reduced significantly when SiC devices are used with respect to Si devices. Reduction in peak overshoot also increases the converter efficiency. The total package substrate dimension of the converter circuit is only $5mm{\times}5mm$. Thermal analysis performed in the paper shows that these devices would be very useful for use as miniaturized power converters for load currents of up to 5-7 amp, keeping the package thermal conductivity limitation in mind. The converter is ideal for voltage requirements for sub-5 V level power supplies for high temperatures and space electronics systems.

전력계통 신뢰도 강화를 위한 저주파계전기의 적정 부하차단 방안 (Load Shedding Schemes of Under Frequency Relay to Improve Reliability in Power Systems)

  • 김규호;송경빈;김일동;양정재;조범섭
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1214-1220
    • /
    • 2010
  • This paper proposes an efficient under frequency relay load shedding scheme for the korea power system which is more than two times than the system size and its capacity of the power system 10 years ago. The proposed method is keeping the power system stability and supports for the operating system during critical situations such as big disturbances and unstable in supply and demand. In order to determine the number of load shedding steps, the load to be shed per step, and frequency level, it is necessary to investigate and analyze maximum losses of generation due to the biggest contingency, maximum system overload, maximum keeping frequency, maximum load to be shed, and recovery frequency. The proposed method is applied to Off-peak load(25,400MW) and Peak load(62,290MW) of Korea Electric Power Corporation to demonstrate its effectiveness.

A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft

  • Zaman, Haider;Zheng, Xiancheng;Yang, Mengxin;Ali, Husan;Wu, Xiaohua
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.23-33
    • /
    • 2018
  • Silicon Carbide (SiC) MOSFET belongs to the family of wide-band gap devices with inherit property of low switching and conduction losses. The stable operation of SiC MOSFET at higher operating temperatures has invoked the interest of researchers in terms of its application to high power density (HPD) power converters. This paper presents a performance study of SiC MOSFET based two-phase interleaved boost converter (IBC) for regulation of avionics bus voltage in more electric aircraft (MEA). A 450W HPD, IBC has been developed for study, which delivers 28V output voltage when supplied by 24V battery. A gate driver design for SiC MOSFET is presented which ensures the operation of converter at 250kHz switching frequency, reduces the miller current and gate signal ringing. The peak current mode control (PCMC) has been employed for load voltage regulation. The efficiency of SiC MOSFET based IBC converter is compared against Si counterpart. Experimentally obtained efficiency results are presented to show that SiC MOSFET is the device of choice under a heavy load and high switching frequency operation.