• Title/Summary/Keyword: patterning process

Search Result 442, Processing Time 0.027 seconds

A Study for Micro-patterning using an Electrostatic Inkjet (정전기력 잉크젯 프린팅을 이용한 마이크로 패터닝에 관한 연구)

  • Kim, Jun-Woo;Choi, Kyoung-Hyun;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1103-1106
    • /
    • 2008
  • For the current display process, the innovative micro pattern fabrication process using semiconductor process should be developed, which requires the expensive equipment, the limited process environment and the expensive optic-sensitive material. The effort of process innovation during past several years ends up the limit of cost reduction. The existing ink jet technologies such as a thermal bubble ink jet printing and a piezo ink jet printing are required to shorten the nozzle diameter in order to apply to the micro pattern fabrication. In this paper, as one way to cope these problems the micro pattern equipment based on the electrostatic ink jet has been developed and carried out some experiments.

  • PDF

Patterning of Pt thin films using SiO$_2$mask in a high density plasma (고밀도 플라즈마에서 규소산화막을 마스크로 이용한 백금박막의 페터닝)

  • 이희섭;이종근;박세근;정양희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.87-92
    • /
    • 1997
  • Inductively coupled Cl$_{2}$ plasma has been studied to etch Pt thin films, which hardly form volatile compound with any reactive gas at normal process temperature. Low etch rate and residue problems are frequently observed. For higher etch rate, high density plasma and higher process temperature is adopted observed. For higher etch rate, high density plasma and higher process temperature is adopted and thus SiO$_{2}$ is used as for patterning mask instead of photoresist. The effect of O$_{2}$ or Ar addition to Cl$_{2}$ was investigated, and the chamber pressure, gas flow rate, surce RF power and bias RF power are also varied to check their effects on etch rate and selectivity. The major etching mechanism is the physical sputtering, but the ion assisted chemical raction is also found to be a big factor. The proposs can be optimized to obtain the etch rate of Pt up to 200nm/min and selectivity to SiO$_{2}$ at 2.0 or more. Patterning of submicron Pt lines are successfully demonstrated.

  • PDF

Chemical Mechanical Polishing Characteristics of BTO Thin Film for Vertical Sidewall Patterning of High-Density Memory Capacitor (고집적 메모리 커패시터의 Vertical Sidewall Patterning을 위한 BTO 박막의 CMP 특성)

  • Ko, Pil-Ju;Park, Sung-Woo;Lee, Kang-Yeon;Lee, Woo-Sun;Seo, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.116-121
    • /
    • 2006
  • Most high-k materials are well known not to be etched easily, Some problems such as low etch rate poor sidewall angle, plasma damage, and process complexity were emerged from the high-density DRAM fabrication. Chemical mechanical polishing (CMP) by a damascene process was proposed to pattern this high-k material was polished with some commercial silica slurry as a function of pH variation. Sufficient removal rate with adequate selectivity to realize the pattern mask of tera-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle were obtained. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible. The planarization was also achieved for the subsequent multi-level processes. Our new CMP approach will provide a guideline for effective patterning of high-k material by CMP technique.

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

Study on Indirect Laser Patterning for Manufacturing the Printing Roll (인쇄용 롤 제작을 위한 간접식 레이저 패터닝에 관한 연구)

  • Kang, Heeshin;Noh, Jiwhan;Suh, Jeong
    • Laser Solutions
    • /
    • v.15 no.4
    • /
    • pp.12-15
    • /
    • 2012
  • On behalf of the existing semiconductor process, the electronic devices to low-cost mass production to mass print the way, the research for development of roll-to-roll printing process is actively underway. This study was performed in about the research on the manufacturing technology of the printing roll used in the printing process of electronic devices. The indirect laser imprinting technology was used to create printable roll, and after coating copper on the surface of steel and thereon after coating polymer, after removing the polymer on the surface of roll, the printable roll was made. The laser system and roll feeder system were constructed and control program was developed. We has found the optimal conditions to perform laser patterning experiments using a system developed and We can make the minimum line width of 18 ${\mu}m$.

  • PDF

High Quality Non-Transfer Single-Layer Graphene Process Grown Directly on Ti(10 nm)-Buffered Layer for Photo Lithography Process (포토 리소그래피 공정을 위한 Ti(10 nm)-Buffered층 위에 직접 성장된 고품질 무전사 단층 그래핀 공정)

  • Oh, Keo-Ryong;Han, Yire;Eom, Ji-Ho;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2021
  • Single-layer graphene is grown directly on Ti-buffered SiO2 at 100℃. As a result of the AFM measurement of the Ti buffer layer, the roughness of approximately 0.2 nm has been improved. Moreover, the Raman measurement of graphene grown on it shows that the D/G intensity ratio is extremely small, approximately 0.01, and there are no defects. In addition, the 2D/G intensity ratio had a value of approximately 2.1 for single-layer graphene. The sheet resistance is also 89 Ω/□, demonstrating excellent characteristics. The problem was solved by using graphene and a lift-off patterning method. Low-temperature direct-grown graphene does not deteriorate after the patterning process and can be used for device and micro-patterning research.

A Novel Patterning Method for Silver Nanowire-based Transparent Electrode using UV-Curable Adhesive Tape (광경화 점착 테이프를 이용한 은 나노와이어 기반 투명전극 패터닝 공법)

  • Ju, Yun Hee;Shin, Yoo Bin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.73-76
    • /
    • 2020
  • Silver nanowires (AgNWs) intrinsically possess high conductivity, ductility, and network structure percolated in a low density, which have led to many advanced applications of transparent and flexible electronics. Most of these applications require patterning of AgNWs, for which photolithographic and printing-based techniques have been widely used. However, several drawbacks such as high cost and complexity of the process disturb its practical application with patterning AgNWs. Herein, we propose a novel method for the patterning of AgNWs by employing UV-curable adhesive tape with a structure of liner/adhesive layer/polyolefin (PO) film and UV irradiation to simplify the process. First, the UV-curable adhesive tape was attached to AgNWs/polyurethane (PU), and then selectively exposed to UV irradiation by using a photomask. Subsequently, the UV-curable adhesive tape was peeled off and consequently AgNWs were patterned on PU substrate. This facile method is expected to be applicable to the fabrication of a variety of low-cost, shape-deformable transparent and wearable devices.

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

2.22-inch qVGA ${\alpha}$-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, J.B.;Park, S.;Heo, S.K.;You, C.K.;Min, H.K.;Kim, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1649-1652
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (${\alpha}$- Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated because the 2.5 um fine pattern formation technique is combined with high thermal photo-resist (PR) development. In addition, a novel concept of unique ${\alpha}$-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um finepatterning is a considerably significant technology to obtain higher aperture ratio for higher resolution ${\alpha}$-Si TFT-LCD panel realization.

  • PDF