Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.1.21

High Quality Non-Transfer Single-Layer Graphene Process Grown Directly on Ti(10 nm)-Buffered Layer for Photo Lithography Process  

Oh, Keo-Ryong (Department of Materials Science and Engineering, Chungnam National University)
Han, Yire (Department of Materials Science and Engineering, Chungnam National University)
Eom, Ji-Ho (Department of Materials Science and Engineering, Chungnam National University)
Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.1, 2021 , pp. 21-26 More about this Journal
Abstract
Single-layer graphene is grown directly on Ti-buffered SiO2 at 100℃. As a result of the AFM measurement of the Ti buffer layer, the roughness of approximately 0.2 nm has been improved. Moreover, the Raman measurement of graphene grown on it shows that the D/G intensity ratio is extremely small, approximately 0.01, and there are no defects. In addition, the 2D/G intensity ratio had a value of approximately 2.1 for single-layer graphene. The sheet resistance is also 89 Ω/□, demonstrating excellent characteristics. The problem was solved by using graphene and a lift-off patterning method. Low-temperature direct-grown graphene does not deteriorate after the patterning process and can be used for device and micro-patterning research.
Keywords
Graphene; Ti buffer layer; Plasma assisted thermal chemical vapor deposition; Photo lithography (lift-off);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stomer, Solid State Commun., 146, 351 (2008). [DOI: https://doi.org/10.1016/j.ssc.2008.02.024]   DOI
2 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett., 100, 016602 (2008). [DOI: https://doi.org/10.1103/PhysRevLett.100.016602]   DOI
3 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahan, F. Miao, and C. N. Lau , Nano Lett., 8, 902 (2008). [DOI: https://doi.org/10.1021/nl0731872]   DOI
4 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). [DOI: https://doi.org/10.1126/science.1157996]   DOI
5 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). [DOI: https://doi.org/10.1002/adma.201001068]   DOI
6 L. Dai, Carbon Nanotechnology (Elsevier Science, Amsterdam, The Netherlands, 2006) p. 633.
7 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Ju ng, E. Tu tu c, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). [DOI: https://doi.org/10.1126/science.1171245]   DOI
8 S. Bae, S. J. Kim, D. Shin, J. H. Ahn, and B. H. Hong, Phys. Scr., 2012, 014024 (2012). [DOI: https://doi.org/10.1088/0031-8949/2012/T146/014024]   DOI
9 J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, ACS Nano, 5, 2433 (2011). [DOI: https://doi.org/10.1021/nn103102a]   DOI
10 Y. Han, B. J. Park, J. H. Eom, and S. G. Yoon, Korean J. Mater. Res., 30, 142 (2020). [DOI: https://doi.org/10.3740/MRSK.2020.30.3.142]   DOI
11 B. J. Park, J. S. Choi, J. H. Eom, H. Ha, H. Y. Kim, S. Lee, H. Shin, and S. G. Yoon, ACS Nano, 12, 2008 (2018). [DOI: https://doi.org/10.1021/acsnano.8b00015]   DOI
12 H. A. Song, B. J. Park, and S. G. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 387 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.5.387]   DOI