• 제목/요약/키워드: path-planning

검색결과 1,144건 처리시간 0.029초

G2 Continuity Smooth Path Planning using Cubic Polynomial Interpolation with Membership Function

  • Chang, Seong-Ryong;Huh, Uk-Youl
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.676-687
    • /
    • 2015
  • Path planning algorithms are used to allow mobile robots to avoid obstacles and find ways from a start point to a target point. The general path planning algorithm focused on constructing of collision free path. However, a high continuous path can make smooth and efficiently movements. To improve the continuity of the path, the searched waypoints are connected by the proposed polynomial interpolation. The existing polynomial interpolation methods connect two points. In this paper, point groups are created with three points. The point groups have each polynomial. Polynomials are made by matching the differential values and simple matrix calculation. Membership functions are used to distribute the weight of each polynomial at overlapped sections. As a result, the path has $G^2$ continuity. In addition, the proposed method can analyze path numerically to obtain curvature and heading angle. Moreover, it does not require complex calculation and databases to save the created path.

PRM과 포텐셜 필드 기법에 기반한 다자유도 머니퓰레이터의 충돌회피 경로계획 (Collision-Free Path Planning for a Redundant Manipulator Based on PRM and Potential Field Methods)

  • 박정준;김휘수;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.362-367
    • /
    • 2011
  • The collision-free path of a manipulator should be regenerated in the real time to achieve collision safety when obstacles or humans come into the workspace of the manipulator. A probabilistic roadmap (PRM) method, one of the popular path planning schemes for a manipulator, can find a collision-free path by connecting the start and goal poses through the roadmap constructed by drawing random nodes in the free configuration space. The path planning method based on the configuration space shows robust performance for static environments which can be converted into the off-line processing. However, since this method spends considerable time on converting dynamic obstacles into the configuration space, it is not appropriate for real-time generation of a collision-free path. On the other hand, the method based on the workspace can provide fast response even for dynamic environments because it does not need the conversion into the configuration space. In this paper, we propose an efficient real-time path planning by combining the PRM and the potential field methods to cope with static and dynamic environments. The PRM can generate a collision-free path and the potential field method can determine the configuration of the manipulator. A series of experiments show that the proposed path planning method can provide robust performance for various obstacles.

부분적으로 알려진 환경에 대한 이동 로봇의 경로 생성 계획기에 관한 연구 (A study on the path planner for a mobile robot in partially known environment)

  • 서영섭;박천욱;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2342-2344
    • /
    • 1998
  • In this paper, the path planner is presented for a robot to achieve an efficient path forward the given goal position in two dimensional environment which is involved with partially unknown obstacles. The path planner consists of three major components: off-line path planning, on-line path planning, and modification of planned path. Off-line path planning is based on known environment and creates the shortest path. On-line path planning is for finding unknown obstacles. The modification can be accomplished, by genetic algorithm, to be smooth path for preventing slippage and excessive centrifugal force.

  • PDF

유전 알고리즘을 이용한 이동로봇의 경로 계획 (Path planning for mobile robot using genetic algorithm)

  • 곽한택;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1189-1192
    • /
    • 1996
  • Navigation is a science of directing a mobile robot as traversing the environment. The purpose of navigation is to reach a destination without getting lost or crashing into any obstacles. In this paper, we use a genetic algorithm for navigation. Genetic algorithm searches for path in the entire, continuous free space and unifies global path planning and local path planning. It is the efficient and effective method when compared with navigators using traditional approaches.

  • PDF

유전 알고리즘을 이용한 미지의 장애물이 존재하는 작업공간내 이동 로봇의 경로계획 (Path Planning for Mobile Robot in Unstructured Workspace Using Genetic Algorithms)

  • 조현철;이기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2318-2320
    • /
    • 1998
  • A genetic algorithm for global and local path planning and collision avoidance of mobil robot in unstructured workspace is proposed. The genetic algorithm searches for a path in the entire and continuous free space and unifies global path planning and local path planning. The simulation shows the proposed method is an efficient and effective method when compared with the traditional collision avoidance algorithms.

  • PDF

동적 변화의 작업환경 내에서 이동 로봇의 경로계획 (Path Planning for a Mobile Robot in Dynamic Working Environments)

  • 조현철;이기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3098-3100
    • /
    • 1999
  • A genetic algorithm for global and local path planning and collision avoidance of mobile robot in dynamic working environment is proposed. The genetic algorithm searches for a path in the entire and continuous free space and unifies global path planning and local path planning. The simulation shows the proposed method is an efficient and effective method when compared with the traditional collision avoidance algorithms.

  • PDF

경로 추적 방식의 AGV를 위한 경로 계획 (Path Planning for AGVs with Path Tracking)

  • 도주철;김정민;정경훈;우승범;김성신
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.332-338
    • /
    • 2010
  • This paper presents a study of path-planning method for AGV(automated guided vehicle) based on path-tracking. It is important to find an optimized path among the AGV techniques. This is due to the fact that the AGV is conditioned to follow the predetermined path. Consequently, the path-planning method is implemented directly affects the whole AGV operation in terms of its performance efficiency. In many existing methods are used optimization algorithms to find optimized path. However, such methods are often prone with problems in handling the issue of inefficiency that exists in system's operation due to inherent undue time delay created by heavy load of complex computation. To solve such problems, we offer path-planning method using modified binary tree. For the purpose of our experiment, we initially designed a AGV that is equiped with laser navigation, two encoders, a gyro sensor that is meant to be operated within actual environment with given set of constrictions and layout for the AGV testing. The result of our study reflects the fact that within such environments, the proposed method showed improvement in its efficiency in finding optimized path.

Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping

  • Namgung, Ihn
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.92-105
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on algebraic curve is developed and the concept of collision-free Path Space (PS) is introduced. This paper presents a Geometry Mapping (GM) based on two straight curves in which the intermediate connection point is organized in elliptic locus ($\delta$, $\theta$). The GM produces two-dimensional PS that is used to create the shortest collision-free path. The elliptic locus of intermediate connection point has a special property in that the total distance between the focus points through a point on ellipse is the same regardless of the location of the intermediate connection point on the ellipse. Since the radial distance, a, represents the total length of the path, the collision-free path can be found as the GM proceeds from $\delta$=0 (the direct path) to $\delta$=$\delta$$\_$max/(the longest path) resulting in the minimum time search. The GM of elliptic workspace (EWS) requires calculation of interference in circumferential direction only. The procedure for GM includes categorization of obstacles to .educe necessary calculation. A GM based on rectangular workspace (RWS) using Cartesian coordinate is also considered to show yet another possible GM. The transformations of PS among Circular Workspace Geometry Mapping (CWS GM) , Elliptic Workspace Geometry Mapping (EWS GM) , and Rectangular Workspace Geometry Mapping (RWS GM), are also considered. The simulations for the EWS GM on various computer systems are carried out to measure performance of algorithm and the results are presented.

무인차량의 주행성능을 고려한 장애물 격자지도 기반의 지역경로계획 (A Local Path Planning Algorithm considering the Mobility of UGV based on the Binary Map)

  • 이영일;이호주;고정호
    • 한국군사과학기술학회지
    • /
    • 제13권2호
    • /
    • pp.171-179
    • /
    • 2010
  • A fundamental technology of UGV(Unmanned Ground Vehicle) to perform a given mission with success in various environment is a path planning method which generates a safe and optimal path to the goal. In this paper, we suggest a local path-planning method of UGV based on the binary map using world model data which is gathered from terrain perception sensors. In specially, we present three core algorithms such as shortest path computation algorithm, path optimization algorithm and path smoothing algorithm those are used in the each composition module of LPP component. A simulation is conducted with M&S(Modeling & Simulation) system in order to verify the performance of each core algorithm and the performance of LPP component with scenarios.

홉필드 모델을 이용한 J-리드 검사 경로 생성 (Path planning of the J-lead inspection using hopfield model)

  • 이중호;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1774-1777
    • /
    • 1997
  • As factory automation is required, using the vision system is also essential. Especially, the pateh planning of parts with J-lead on PCB plays a import role of whole automation. Path planning is required because J-lead is scatteed compaed to L-lead on PCB. Therefore, in this paper, we propose path planning of part inspection with J-lead to use Hopfield Model(TSP : Traveling Salesman Problem). Then optical system suited to J-lead inspection is designed and the algorithm of J-lead solder joint and part inspection is proposed.

  • PDF