• Title/Summary/Keyword: passive system

Search Result 2,258, Processing Time 0.038 seconds

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Passive-based Bilateral Controller Design under Varying Time Delay

  • Gu, Ying;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.97-99
    • /
    • 2009
  • Bilateral teleoperation systems, connected to computer networks such as Internet have to deal with the time delay varying depending on factors such as congestion, bandwidth or distance. And the entire system is easy to become unstable due to irregular time delay. Passivity concept has been using as a framework to solve the stability problem in bilateral control of teleoperation. Acontrol scheme for teleoperation systems with varying time delay is proposed based on a passivity concept is proposed in this paper. One approach makinguse of the characteristic impedances is proposed to achieve a passive control. Since passive control does not mean that the system performance will be acceptable, another transmission scheme which focuses on both the passive feature and the acceptable performance is configured for varying time delay in this paper. The tracking performance has been proved through the computer simulation for varying time delay bilateral teleoperation system using Matlab Simulink.

  • PDF

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 박철휴;안상준;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

A Passive Multiple Trailer System with Off-axle Hitching

  • Lee, Jae-Hyoung;Woojin Chung;Kim, Munsnng;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.289-297
    • /
    • 2004
  • This paper deals with the design and control of passive multiple trailer systems for practical applications. Due to the cost and complexity of the trailer mechanism, passive systems are preferred to active systems in this research. The design and control objective is to minimize the trajectory tracking errors occurring in passive multiple trailers. Three sorts of passive trailer systems, off-hooked, direct-hooked, and three-point, are discussed in this paper. Trajectory tracking performance and stability issues under constant curvature reference trajectories are investigated for these three types. As well, various simulations and experiments have been performed for each type. It is shown that the proposed off-hooked trailer system produces a tracking performance that is superior to the others.

Passive Telemetry Capacitive Humidity Sensor System using RLSE Algorithm

  • Lee, Joon-Tark;Park, Young-sik;Kim, Kyung-Yup
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.495-498
    • /
    • 2004
  • In this paper, passive telemetry capacitive humidity sensor system using a RLSE(Recursive Least Square Estimation) technique Is proposed. To overcome the problem like power limits and complications that general passive telemetry sensor system including IC chip has, the principle of inductive coupling is applied to model the sensor system. Specially, by applying the forgetting factor, we show that the accuracy of its estimation can be improved even in the case of time varying parameter and also the convergence time can be reduced.

  • PDF

Passive Telemetry Sensor System using RLSE Based Real Time Estimation Technique with Optimal Forgetting Factor

  • Lee, Joon-Tark;Kim, Kyung-Yup
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.515-520
    • /
    • 2004
  • In this paper, a passive telemetry RF capacitive humidity sensor system using a RLSE(Recursive Least Square Estimation) technique is proposed. To overcome these trouble problems such as a power limitation and a estimation complexity that the general passive telemetry sensor system including It chip has, the principle of inductive coupling was applied to the modeling of a passive telemetry RF capacitive humidity sensor system and its capacitance was estimatedd by the RLSE algorithm. Specially, by introducing the optimal forgetting factor, we showed that the accuracy of its estimation was improved even in the time varying system and also the convergence time was reduced.

  • PDF

Development of the Passive-Active Vibration Absorber Using Piezoelectric Actuators (수동-능동 압전형 진동흡수장치의 개발)

  • Kwak, Myung-Hoon;Heo, Seok;Kwak, Moon-K
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.308-312
    • /
    • 2001
  • This research is concerned with development of the passive-active vibration absorber using piezoelectric actuators. This active-passive isolation system consists of 4-pairs of PZT actuators bonded on accordion type of mounting bracket and a spring-damper located in center. Hence, the active system is connected in parallel to the passive system. In this paper, we discuss the dynamic characteristics of the addressed system. Based on the series of experiment, it is found that the proposed system can cope with the external disturbances. The controller design is currently under investigation.

  • PDF