Browse > Article
http://dx.doi.org/10.26748/KSOE.2020.017

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications  

Yang, Haesang (Department of Naval Architecture & Ocean Engineering, Seoul National University)
Lee, Keunhwa (Department of Defense System Engineering, Sejong University)
Choo, Youngmin (Department of Defense System Engineering, Sejong University)
Kim, Kookhyun (School of Naval Architecture & Ocean Engineering, Tongmyong University)
Publication Information
Journal of Ocean Engineering and Technology / v.34, no.3, 2020 , pp. 227-236 More about this Journal
Abstract
Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.
Keywords
Underwater acoustics; Passive SONAR system; Machine learning; Deep learning; Signal processing; Passive target classification; Passive source localization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Allen, N., Hines, P.C., & Young, V.W. (2011). Performances of Human Listeners and an Automatic Aural Classifier in Discriminating between Sonar Target Echoes and Clutter. The Journal of the Acoustical Society of America, 130(3), 1287-1298. https://doi.org/10.1121/1.3614549   DOI
2 Chakrabarty, S., & Habets, E.A. (2017). Broadband DOA Estimation Using Convolutional Neural Networks Trained with Noise Signals. Paper Presented at the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). https://doi.org/10.1109/WASPAA.2017.8170010
3 Chi, J., Li, X., Wang, H., Gao, D., & Gerstoft, P. (2019). Sound Source Ranging Using a Feed-forward Neural Network with Fitting-based Early Stopping. The Journal of the Acoustical Society of America, 146(3), EL258-EL264. https://doi.org/10.1121/1.5126115   DOI
4 Choi, J., Choo, Y., & Lee, K. (2019). Acoustic Classification of Surface and Underwater Vessels in the Ocean Using Supervised Machine Learning. Sensors, 19(16), 3492. https://doi.org/10.3390/s19163492   DOI
5 Conan, E., Bonnel, J., Chonavel, T., & Nicolas, B. (2016). Source Depth Discrimination with a Vertical Line Array. The Journal of the Acoustical Society of America, 140(5), EL434-EL440. https://doi.org/10.1121/1.4967506   DOI
6 Conan, E., Bonnel, J., Nicolas, B., & Chonavel, T. (2017). Using the Trapped Energy Ratio for Source Depth Discrimination with a Horizontal Line Array: Theory and Experimental Results. The Journal of the Acoustical Society of America, 142(5), 2776-2786. https://doi.org/10.1121/1.5009449   DOI
7 Das, A. (2017). Theoretical and Experimental Comparison of Off-grid Sparse Bayesian Direction-of-arrival Estimation Algorithms. IEEE Access, 5, 18075-18087. https://doi.org/10.1109/ACCESS.2017.2747153   DOI
8 Das, A., & Sejnowski, T.J. (2017). Narrowband and Wideband Off-grid Direction-of-arrival Estimation via Sparse Bayesian Learning. IEEE Journal of Oceanic Engineering, 43(1), 108-118. https://doi.org/10.1109/JOE.2017.2660278   DOI
9 Donoho, D.L. (2006). Compressed Sensing. IEEE Transactions on Information theory, 52(4), 1289-1306. https://doi.org/10.1109/TIT.2006.871582   DOI
10 Edelmann, G.F., & Gaumond, C.F. (2011). Beamforming Using Compressive Sensing. The Journal of the Acoustical Society of America, 130(4), EL232-EL237. https://doi.org/10.1121/1.3632046   DOI
11 Gemba, K.L., Nannuru, S., & Gerstoft, P. (2019). Robust Ocean Acoustic Localization with Sparse Bayesian Learning. IEEE Journal of Selected Topics in Signal Processing, 13(1), 49-60. https://doi.org/10.1109/JSTSP.2019.2900912   DOI
12 Huang, Z., Xu, J., Gong, Z., Wang, H., & Yan, Y. (2018). Source Localization Using Deep Neural Networks in a Shallow Water Environment. The Journal of the Acoustical Society of America, 143(5), 2922-2932. https://doi.org/10.1121/1.5036725   DOI
13 Gerstoft, P., Mecklenbrauker, C.F., Xenaki, A., & Nannuru, S. (2016). Multisnapshot Sparse Bayesian Learning for DOA. IEEE Signal Processing Letters, 23(10), 1469-1473. https://doi.org/10.1109/LSP.2016.2598550   DOI
14 Gerstoft, P., Nannuru, S., Mecklenbrauker, C.F., & Leus, G. (2019). DOA Estimation in Heteroscedastic Noise. Signal Processing, 161, 63-73. https://doi.org/10.1016/j.sigpro.2019.03.014   DOI
15 Hemminger, T.L., & Pao, Y.-H. (1994). Detection and Classification of Underwater Acoustic Transients Using Neural Networks. IEEE Transactions on Neural Networks, 5(5), 712-718. https://doi.org/10.1109/72.317723   DOI
16 Jensen, F.B., Kuperman, W.A., Porter, M.B., & Schmidt, H. (2011). Computational Ocean Acoustics. Springer Science & Business Media.
17 Ke, X., Yuan, F., & Cheng, E. (2018). Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm. Sensors, 18(12), 4318. https://doi.org/10.3390/s18124318   DOI
18 Komari Alaie, H., & Farsi, H. (2018). Passive Sonar Target Detection Using Statistical Classifier and Adaptive Threshold. Applied Sciences, 8(1), 61. https://doi.org/10.3390/app8010061   DOI
19 Lefort, R., Real, G., & Dremeau A. (2017). Direct Regressions for Underwater Acoustic Source Localization in Fluctuating Oceans. Applied Acoustics, 116, 303-310. https://doi.org/10.1016/j.apacoust.2016.10.005   DOI
20 Liang, G., Zhang, Y., Zhang, G., Feng, J., & Zheng, C. (2018). Depth Discrimination for Low-Frequency Sources Using a Horizontal Line Array of Acoustic Vector Sensors Based on Mode Extraction. Sensors, 18(11), 3692. https://doi.org/10.3390/s18113692   DOI
21 Park, Y., Seong, W., & Choo, Y. (2017). Compressive Time Delay Estimation off the Grid. The Journal of the Acoustical Society of America, 141(6), EL585-EL591. https://doi.org/10.1121/1.4985612   DOI
22 Niu, H., Ozanich, E., & Gerstoft, P. (2017a). Ship Localization in Santa Barbara Channel Using Machine Learning Classifiers. The Journal of the Acoustical Society of America, 142(5), EL455-EL460. https://doi.org/10.1121/1.5010064   DOI
23 Niu, H., Reeves, E., & Gerstoft, P. (2017b). Source Localization in an Ocean Waveguide Using Supervised Machine Learning. The Journal of the Acoustical Society of America, 142(3), 1176-1188. https://doi.org/10.1121/1.5000165   DOI
24 Ozard, J.M., Zakarauskas, P., & Ko, P. (1991). An Artificial Neural Network for Range and Depth Discrimination in Matched Field Processing. The Journal of the Acoustical Society of America, 90(5), 2658-2663. https://doi.org/10.1121/1.401860   DOI
25 Shin, F.B., & Kil, D.H. (1996). Full-spectrum Signal Processing Using a Classify-before-detect Paradigm. The Journal of the Acoustical Society of America, 99(4), 2188-2197. https://doi.org/10.1121/1.415407   DOI
26 Tipping, M.E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1(Jun), 211-244.
27 Wang, W., Ni, H., Su, L., Hu, T., Ren, Q., Gerstoft, P., & Ma, L. (2019a). Deep Transfer Learning for Source Ranging: Deep-sea Experiment Results. The Journal of the Acoustical Society of America, 146(4), EL317-EL322. https://doi.org/10.1121/1.5126923   DOI
28 Murphy, S.M., & Hines, P.C. (2014). Examining the Robustness of Automated Aural Classification of Active Sonar Echoes. The Journal of the Acoustical Society of America, 135(2), 626-636. https://doi.org/10.1121/1.4861922   DOI
29 Nannuru, S., Gemba, K.L., Gerstoft, P., Hodgkiss, W.S., & Mecklenbrauker, C.F. (2019). Sparse Bayesian Learning with Multiple Dictionaries. Signal Processing, 159, 159-170. https://doi.org/10.1016/j.sigpro.2019.02.003   DOI
30 Tucker, S., & Brown, G.J. (2005). Classification of Transient Sonar Sounds Using Perceptually Motivated Features. IEEE Journal of Oceanic Engineering, 30(3), 588-600. https://doi.org/10.1109/JOE.2005.850910   DOI
31 Nielsen, R.O. (1991). Sonar Signal Processing. Artech House.
32 Wang, X., Liu, A., Zhang, Y., & Xue, F. (2019b). Underwater Acoustic Target Recognition: A Combination of Multi-Dimensional Fusion Features and Modified Deep Neural Network. Remote Sensing, 11(16), 1888. https://doi.org/10.3390/rs11161888   DOI
33 Wang, Y., & Peng, H. (2018). Underwater Acoustic Source Localization Using Generalized Regression Neural Network. The Journal of the Acoustical Society of America, 143(4), 2321-2331. https://doi.org/10.1121/1.5032311   DOI
34 Xenaki, A., & Gerstoft, P. (2015). Grid-free Compressive Beamforming. The Journal of the Acoustical Society of America, 137(4), 1923-1935. https://doi.org/10.1121/1.4916269   DOI
35 Xenaki, A., Gerstoft, P., & Mosegaard, K. (2014). Compressive Beamforming. The Journal of the Acoustical Society of America, 136(1), 260-271. https://doi.org/10.1121/1.4883360   DOI
36 Yang, H., Lee, K., Choo, Y., Kim, K. (2020). Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology, 34(2), 147-154. https://doi.org/10.26748/2020.015   DOI
37 Yang, H., Shen, S., Yao, X., Sheng, M., & Wang, C. (2018). Competitive Deep-belief Networks for Underwater Acoustic Target recognition. Sensors, 18(4), 952. https://doi.org/10.3390/s18040952   DOI
38 Zhang, Z., & Rao, B.D. (2011). Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning. IEEE Journal of Selected Topics in Signal Processing, 5(5), 912-926. https://doi.org/10.1109/JSTSP.2011.2159773   DOI
39 Yang, L., & Chen, K. (2015). Performance and Strategy Comparisons of Human Listeners and Logistic Regression in Discriminating Underwater Targets. The Journal of the Acoustical Society of America, 138(5), 3138-3147. https://doi.org/10.1121/1.4935390   DOI
40 Young, V.W., & Hines, P.C. (2007). Perception-based Automatic Classification of Impulsive-source Active Sonar Echoes. The Journal of the Acoustical Society of America, 122(3), 1502-1517. https://doi.org/10.1121/1.2767001   DOI
41 Zion, B., Beran, M., Chin. S., & Howard, J.J. (1991). A Neural Network Approach to Source Localization. The Journal of the Acoustical Society of America, 90(4), 2081-2090. https://doi.org/10.1121/1.401635   DOI
42 Niu, H., Gong, Z., Ozanich, E., Gerstoft, P., Wang, H., & Li, Z. (2019). Deep-learning Source Localization Using Multi-Frequency Magnitude-only Data. The Journal of the Acoustical Society of America, 146(1), 211-222. https://doi.org/10.1121/1.5116016
43 Zhang, Z., & Rao, B.D. (2013). Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-block Correlation. IEEE Transactions on Signal Processing, 61(8), 2009-2015. https://doi.org/10.1109/TSP.2013.2241055   DOI