• 제목/요약/키워드: particle system

검색결과 2,947건 처리시간 0.032초

SMPS 시스템에서 용매(물)가 나노입도측정결과에 미치는 영향 (The Effect of Water Droplets on the Nano Particle Size Distribution using the SMPS System)

  • 황보선애;추민철
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.129-133
    • /
    • 2013
  • In this paper we have studied the effect of water droplet size on nano-particle size distribution using SMPS(Scanning Mobility Particle Sizer)system. It can be seen that the unknown peak at >100 nm was caused by water droplets which did not dry completely when DI water was used as a solvent in the SMPS system. Therefore, it is important to dry water droplets generated from atomizer in the SMPS system when measuring the particle size distribution using less than 100 nm nano-particles in diameter. From this study, It can be concluded that the napion was a useful material as dryer ones and using EAG(Electro Aerosol Generator) as a particle generator was the most effective in reducing the effect of water droplets.

방사면역치료를 위한 알파 방출 방사성 동위원소 생산 (Alpha-emitting Radioisotopes Production for Radioimmunotherapy)

  • 전권수
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2007
  • This review discusses the production of alpha-particle-emitting radionuclides in radioimmunotherapy. Radioimmunotherapy labeled with alpha-particle is expected to be very useful for the treatment of monocellular cancer (e.g. leukemia) and micrometastasis at an early stage, residual tumor remained in tissues after chemotherapy and tumor resection, due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha particle. Despite of the expected effectiveness of alpha-particle in radioimmunotherapy, its clinical research has not been activated by the several reasons, shortage of a suitable a-particle development and a reliable radionuclide production and supply system, appropriate antibody and chelator development. Among them, the establishment of radionuclide development and supply system is a key factor to make an alpha-immunotherapy more popular in clinical trial. Alpha-emitter can be produced by several methods, natural radionuclides, reactor irradiation, cyclotron irradiation, generator system and elution. Due to the sharply increasing demand of $^{213}Bi$, which is a most promising radionuclide in radioimmunotherapy and now has been produced with reactor, the cyclotron production system should be developed urgently to meet the demand.

다양한 조건의 저압 공정 모니터링을 위한 입자 집속 장치 개발 (Development of particle focusing device to monitor various low pressure processes)

  • 김명준;김동빈;강상우;김태성
    • 한국입자에어로졸학회지
    • /
    • 제13권2호
    • /
    • pp.53-63
    • /
    • 2017
  • As semiconductor process was highly integrated, particle contamination became a major issue. Because particle contamination is related with process yields directly, particles with a diameter larger than half pitch of gate should be controlled. PBMS (Particle beam mass spectrometry) is one of powerful nano particle measurement device. It can measure 5~500 nm particles at ~ 100 mtorr condition in real time by in-situ method. However its usage is restricted to research filed only, due to its big device volume and high price. Therefore aperture changeable aerodynamic lenses (ACALs) which can control particle focusing characteristics by changing its aperture diameter was proposed in this study. Unlike conventional aerodynamic lenses which changes particle focusing efficiency when operating condition is changed, ACALs can maintain particle focusing efficiency. Therefore, it can be used for a multi-monitoring system that connects one PBMS and several process chambers, which greatly improves the commercialization possibility of the PBMS. ACALs was designed based on Stokes number and evaluated by numerical method. Numerical analysis results showed aperture diameter changeable aerodynamic lenses can focus 5 to 100 nm standard particles at 0.1 to 10 torr upstream pressure.

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.

정전효과를 고려한 반도체 웨이퍼의 입자침착 특성 (Particle Deposition Characteristics with Electrostatic Effect on Semiconductor Wafers)

  • 이건형;채승기;문영준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.779-785
    • /
    • 2006
  • Particle transport and deposition characteristics on semiconductor wafers inside the chamber were experimentally investigated via a particle generation & deposition system and a wafer surface scanner. Especially the relation between particle size($0.083{\sim}0.495{\mu}m$) and particle deposition velocity with ESA(Electrostatic Attraction) effect was studied. Spot deposition technique with the deposition system using nozzle type outlets of the chamber was newly conducted to derive particle deposition velocity and all experiment results were compared with the previous study and were in a good agreement as well.

  • PDF

게임 및 가상현실에서의 특수효과를 위한 입자 시스템 에디터 (Particle System Editor for Special Effects in Game and Virtual Reality)

  • 김응곤;송승헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.429-433
    • /
    • 2004
  • 게임과 영화는 현재 엔터테인먼트 산업에서 가장 각광을 받고 있는 분야이며, 이러한 분야에서는 입자 시스템을 이용하여 불꽃, 폭발, 연기, 액체, 눈, 비, 먼지와 같은 특수효과를 만들어 낸다. 게임 및 가상현실에서 상위 수준의 그래픽 라이브러리인 입자 시스템 API를 사용하면 위와 같은 특수효과를 사실적으로 표현할 수 있게 한다. 입자 시스템 API를 적용 시 개발자가 원하는 형태의 특수효과가 구현될 때까지 파라미터 값을 계속 바꿔가며 소스코드를 컴파일하여야 하며, 각 파라미터들 간의 연관성 있는 세밀한 조정이 이루어지기까지 많은 시간이 필요하다는 단점을 가지고 있다. 이에, 본 논문에서는 온라인 게임 및 실시간 가상현실에 실제 적용할 수 있는 입자 시스템 API를 개발하고 위치, 속도, 색상, 투명도, 크기, 수명, 2차 위치, 2차 속도 둥의 속성 조절을 통해 손쉽게 특수효과를 생성할 수 있는 입자 시스템 에디터를 개발하고자 한다.

  • PDF

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

입자 홀로그래피에서 입자의 광축 방향 위치 특성에 관한 연구 (The Characteristics of the Particle Position Along an Optical Axis in Particle Holography)

  • 추연준;강보선
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.287-297
    • /
    • 2006
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. One of inherent limitations of particle holography is the very long depth of field of particle images, which causes considerable difficulty in the determination of particle positions in the optical axis. In this study, we introduced three auto-focusing parameters corresponding to the size of particles, namely, Correlation Coefficient, Sharpness Index, and Depth Intensity to determine the focal plane of a particle along the optical axis. To investigate the suitability of the above parameters, the plane image of dot array screens containing different size of dots was recorded by diffused illumination holography and the positions of each dot in the optical axis were evaluated. In addition, the effect of particle position from the holographic film was examined by changing the distance of the screen from the holographic film. All measurement results verified that the evaluated positions using suggested auto-focusing parameters remain within acceptable range of errors. These research results may provide fundamental information for the development of the holographic velocimetry system based on the automatic image processing.

드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정 (Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone)

  • 김희상;박용희;김우영;은희람;안강호
    • 한국입자에어로졸학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

나노펄스 플라즈마를 이용한 탈황 시스템의 H2O 및 NH3, 펄스 인가전압에 따른 입자변환 분석 (The effect of H2O, NH3 and applied voltage to the particle conversion in the desulfurization system using a nano-pulse plasma)

  • 김영훈;신동호;이건희;홍기정;김학준;김용진;한방우;황정호
    • 한국입자에어로졸학회지
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2020
  • Nano-pulse plasma technology has great potential as the process simplicity, high efficiency and low energy consumption for SO2 removal. The research on the gas-to-particle conversion is required to achieve higher efficiency of SO2 gas removal. Thus, we studied the effect of the relative humidity, NH3 concentration and applied voltage of the nano-pulse plasma system in the gas to particle conversion of SO2. The particles from the conversions were increased from 10 to 100 nm in diameter as relative humidity, NH3 concentration, applied voltage increases. With these results, nano-pulse plasma system can be used to more efficient removal of SO2 gas by controlling above parameters.