Browse > Article

Alpha-emitting Radioisotopes Production for Radioimmunotherapy  

Chun, Kwon-Soo (Radiopharmaceuticals Laboratory, Korea Institute of Radiological & Medical Sciences)
Publication Information
Nuclear Medicine and Molecular Imaging / v.41, no.1, 2007 , pp. 1-8 More about this Journal
Abstract
This review discusses the production of alpha-particle-emitting radionuclides in radioimmunotherapy. Radioimmunotherapy labeled with alpha-particle is expected to be very useful for the treatment of monocellular cancer (e.g. leukemia) and micrometastasis at an early stage, residual tumor remained in tissues after chemotherapy and tumor resection, due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha particle. Despite of the expected effectiveness of alpha-particle in radioimmunotherapy, its clinical research has not been activated by the several reasons, shortage of a suitable a-particle development and a reliable radionuclide production and supply system, appropriate antibody and chelator development. Among them, the establishment of radionuclide development and supply system is a key factor to make an alpha-immunotherapy more popular in clinical trial. Alpha-emitter can be produced by several methods, natural radionuclides, reactor irradiation, cyclotron irradiation, generator system and elution. Due to the sharply increasing demand of $^{213}Bi$, which is a most promising radionuclide in radioimmunotherapy and now has been produced with reactor, the cyclotron production system should be developed urgently to meet the demand.
Keywords
Alpha-emitting radionuclide production; Reactor; Cyclotron; Radioimmunotherapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Mol Imaging 2005;32:601-14   DOI
2 Smith JA, Myburgh JA, Neirinckx RD. Specific inactivation of sensitized lymphocytes in vitro using antigens labelled with astatine-211. Clin Exp Immunol 1973;14:107-16
3 Lambrecht RM, Mirzadeh S. Cyclotron isotopes and radiopharmcauticals-XXXV. Astatine-211. Int J Appl Radiat Isot 1985;36:443-50   DOI   ScienceOn
4 Lebeda O, Jiran R, Ralis J, Stursa J. A new internal target system for production of $^{211}At$ on the cyclotron U-120U. Appl Radiat Isot 2005;63:49-53   DOI   ScienceOn
5 McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 1998;25:1342-51
6 Melville G, Liu SF, Allen BJ. A theoretical model for the production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226. Appl Radiat Isot 2006;64:979-88   DOI   ScienceOn
7 Geerling MW. Radionuclides for radioimmunotherapy: criteria for selection. Int J Biol Markers 1993;8:180-6   DOI
8 Sgouros G, Erdi YE, Humm JL, Mehta B, McDevitt MR, Finn RD, et al. Pharmacokinetics and dosimetry of an alpha aprticle emitter labeled anti-CD33 antibody ([Bi-213]HuM195) in patients with leukemia. J Nucl Med 1999;40:1935-46
9 Atcher RW, Friedman AM, Huizenga JR, Spencer RP. A radionuclide generator for the production of Pb-211 and its daughters. J Radioanal Nucl Chem 1989;135:215-21   DOI
10 Allen BJ, Blagojevic N. Alpha- and beta-emitting radiolanthanides in targeted cancer therapy: the potential role of terbium-149. Nucl Med Commun 1996;17:40-7   DOI   ScienceOn
11 Goozee G, Allen BJ, Imam SK. Tandem accelerator production of Tb-149 for targeted cancer therapy, AINSE Radiation Science Conference 'RADIATION'96'
12 Buchegger F, Perillo-Adamer F, Dupertuis YM, Delaloye AB. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 2006;11:1352-63
13 Johnson EI, Turkington TG, Jaszezak RJ, Gilland DR, Vaidyanathan G, Greer KL, et al. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol 1995;22:45-54   DOI   ScienceOn
14 Geerling MW Sr, Kaspersen FM, Apostolidis C. The feasibility of Ac-225 as a source of ${\alpha}-particles$ in RIT. Nucl Med Commun 1993;14:121-5   DOI
15 Larsen RH, Wieland BW, Zalutsky MR. Evaluation of an internal cyclotron target for the production of $^{211}At$ via the $^{209}Bi({\alpha},2n)^{211}At$ reaction. Appl Radiat Isot 1996;47:135-43   DOI   ScienceOn
16 Sgouros G, Humm JL, McDevitt MR, Kennedy J, Schumaker R, Larson SM, et al. Bismuth-213 imaging: preclinical characterization of an alpha-particle emitting radionuclide. J Nucl Med 1996;37: 78-80
17 Apostolidis C, Molinet R, McGinley J, Abbas K, Mollenbeck J, Morgenstern A. Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot 2005;62:383-7   DOI   ScienceOn
18 Groppi F, Bonardi ML, Birattari C, Menapace E, Abbas K, Holzwarth U, et al. Optimasation study of ${\alpha}$-cyclotron production of At-211/Po-211g for high-LET metabolic radiotherapy purposes. Appl Radiat Isot 2005;63:621-31   DOI   ScienceOn
19 Boll RA, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot 2005;62:667-79   DOI   ScienceOn
20 Hassfjell S, Brechbiel MW. The development of the ${\alpha}$-particle emitting radionuclides $^{212}Bi\;and\;^{213}Bi$, and their decay chain related radionuclides, for therapeutic applications. Chem Rev 2001;101: 2019-36   DOI   ScienceOn
21 Nikula TK, McDevitt MR, Finn RD, Chuanchu W, Kozak RW, Garmestani K, et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med 1999;40:166-76
22 Horak E, Hartmann F, Garmestani K, Wu C, Brechbiel M, Gansow OA, et al. Radioimmunotherapy targeting of HER2/neu oncoprotein on ovarian tumor using lead-212-DOTA-AEI. J Nucl Med 1997;38: 1944-50
23 Humm JL A microdosimetric model of astatine-211 labeled antibodies for radioimmunotherapy. Int J Radiat Oncol Biol Phys 1987;13:1767-73   DOI   ScienceOn
24 Raju MR, Eisen Y, Carpenter S, Inkret WC. Radiobiology of alpha-particles: part III. Cell inactivation by alpha-particle traversals of the cell nucleus. Radiat Res 1991;128:204-9   DOI
25 Zalutsky MR, Zhao XG, Alston KL, et al. High-level production of alpha-particle-emitting 211At and preparation of 211At-labeled antibodies for clinical use. J Nucl Med 2001;42:1508-15
26 Wilbur DS. Potential use of alpha emitting radionuclides in the treatment of cancer. Antibody Immunoconj Radiopharm 1991;4: 85-97
27 Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted ${\alpha}$-particle therapy. J Nucl Med 2005;46:199S-204S
28 Mausner LF, Straub RE, Srivastava SC. The 'in vivo' generator for radioimmunotherapy. J Lab Comp Radiopharm 1989;26:177-8   DOI
29 Atcher RN, Friedman AM, Hines JJ. An improved generator for the production of Bi-212 and Bi-212 from Ra-224. Appl Radiat Isot 1988;39:283-6   DOI
30 Atcher RW, Hines JJ, Friedman AM. A remote system for the separation of Th-228 and Ra-224. J Radioanal Nucl Chem 1987;117:155-62   DOI
31 Spivakov BY, Stoyanov ES, Gribov LA, Zoltov YA. Raman laser spectroscopic studies of bismuth(III) halide complexes in aqueous solutions. J Inorg Nucl Chem 1979;41:453-5   DOI   ScienceOn
32 Henriksen G, Schoultz BW, Michaelsen TE, Bruland OS, Larsen RH. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol 2004;31:441-9   DOI   ScienceOn
33 Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005;46:4S-12S
34 Imam SK. Advancements in cancer therapy with alpha-emitters: A review. Int J Radiation Oncology Biol Phys 2001;51:271-8
35 Zalutsky MR, Narula AS. Astatination of protein using an N-succimidyl tri-n-butylstannyl benzoate intermediate. Appl Radiat Isot 1988;39:227-32   DOI   ScienceOn