• Title/Summary/Keyword: partial differential-difference equations

Search Result 62, Processing Time 0.022 seconds

RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR PARABOLIC PROBLEMS

  • Jun, Youn-Bae;Mai, Tsun-Zee
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.281-294
    • /
    • 2006
  • Many partial differential equations defined on a rectangular domain can be solved numerically by using a domain decomposition method. The most commonly used decompositions are the domain being decomposed in stripwise and rectangular way. Theories for non-overlapping domain decomposition(in which two adjacent subdomains share an interface) were often focused on the stripwise decomposition and claimed that extensions could be made to the rectangular decomposition without further discussions. In this paper we focus on the comparisons of the two ways of decompositions. We consider the unconditionally stable scheme, the MIP algorithm, for solving parabolic partial differential equations. The SOR iterative method is used in the MIP algorithm. Even though the theories are the same but the performances are different. We found out that the stripwise decomposition has better performance.

  • PDF

Large Amplitude Oscillations in a Hanging Cable and Suspension Bridge: Some New Connections with Nonlinear Analysis (케이블과 현수교 다리에서 일어나는 진폭이 큰 진동에 대한 연구)

  • Oh Hye-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • The motions of suspension bridge as well as hanging cable are governed by nonlinear partial differential equations. Nonlinearity gives rise to a large amplitude oscillation. We use finite difference methods to compute periodic solutions to the torsional partial differential equations. We use the one-noded forcing term and a slight perturbation in the forcing term.

  • PDF

Some Modifications of MacCormark's Methods (MacCormack 방법의 개량에 대한 연구)

  • Ha, Young-Soo;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 2005
  • MacCormack's method is an explicit, second order finite difference scheme that is widely used in the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy violations under small discontinuity. This non-physical shock grows fast and eventually all the meaningful information of the solution disappears. Some modifications of MacCormack's methods follow ideas of central schemes with an advantage of second order accuracy for space and conserve the high order accuracy for time step also. Numerical results are shown to perform well for the one-dimensional Burgers' equation and Euler equations gas dynamic.

  • PDF

Convergence of nonlinear algorithms

  • Lee, Young-S.;Simeon Reich
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.115-139
    • /
    • 1995
  • Our purpose in this paper is to prove a new version of the nonlinear Chernoff theorem and to discuss the equivalence between resolvent consistency and converge nce for nonlinear algorithms acting on different Banach spaces. Such results are useful in the numerical treatment of partial differential equations via difference schemes.

  • PDF

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions (분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

Analysis of Partial Discharge Phenomena by means of CAPD (CAPD기법을 이용한 부분방전 현상 해석에 관한 연구)

  • Kim, Sung-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.939-944
    • /
    • 2002
  • PD phenomena can be regarded as a deterministic dynamical process where PD should be occurred if the local electric field be reached to be sufficiently high. And thus, its mathematical model can be described by either difference equations or differential equations using several state variables obtained from the time sequential measured data of PD signals. These variables can provide rich and complex behavior of detectable time series, for which Chaos theory can be employed. In this respect, a new PD pattern recognition method is proposed and named as 'Chaotic Analysis of Partial Discharges (CAPD)' for this work. For this purpose, six types of specimen are designed and made as the models of the possible defects that may cause sudden failures of the underground power transmission cables under service, and partial discharge signals, generated from those samples, are detected and then analyzed by means of CAPD. Throughout the work, qualitative and quantitative properties related to the PD signals from different defects are analyzed by use of attractor in phase space, information dimensions ($D_0$ and D2), Lyapunov exponents and K-S entropy as well. Based on these results, it could be pointed out that the nature of defect seems to be identified more distinctively when the CAPD is combined with traditional statistical method such as PRPDA. Furthermore, the relationship between PD magnitude and the occurrence timing is investigated with a view to simulating PD phenomena.

  • PDF

Analysis of Laminated Composite Skew Plates with Uniform Distributed Load by Finite Difference Method (유한차분법에 의한 등분포 상재하중하 적층 복합재 경사판 해석)

  • Park, Weon Tae;Choi, Jae Jin;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.291-302
    • /
    • 2000
  • In recent years the development of high modulus, high strength and low density boron and graphite fibers bonded together has brought renewed interestes in structural elements. When a plate with arbitrarily oriented layers and clamped boundary conditions is subjected to uniform loading, it is difficult to analyze and apply, compared with isotropic and orthotropic cases. Therefore the numerical methods, such as finite difference method or finite element method, should be emloyed to analyse such problems. In this study the finite difference technique is used to formulate the bending analysis of symmetric composite laminated skew plates. When this technique is used to solve the problem, it is desirable to reduce the order of the derivatives in order to minimize the number of the pivotal points involved in each equation. The 4th order partial differential equations of laminated skew plates are converted to an equivalent three of 2nd order partial differential equations with three dependant variables.

  • PDF

EFFICIENT PARALLEL ITERATIVE METHOD FOR SOLVING LARGE NONSYMMETRIC LINEAR SYSTEMS

  • Yun, Jae-Heon
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.449-465
    • /
    • 1994
  • The two common numerical methods to approximate the solution of partial differential equations are the finite element method and the finite difference method. They both lead to solving large sparse linear systems. For many applications, it is not unusal that the order of matrix is greater than 10, 000. For this kind of problem, a direct method such as Gaussian elimination can not be used because of the prohibitive cost. To this end, many iterative methods with modest cost have been studied and proposed by numerical analysts.(omitted)

  • PDF

The Coupling of Conduction with Free Convection Flow Along a Vertical Flat Plate in Presence of Heat Generation

  • Taher, M.A.;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.833-841
    • /
    • 2007
  • The aim of this paper is to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free convection flow adjacent to a vertical flat plate under boundary layer approximation. Using the similarity transformations the governing boundary layer equations for momentum and energy are reduced to a system of partial differential equations and then solved numerically using Finite Difference Method(FDM) known as the Keller-box scheme. Computed solutions to the governing equations are obtained for a wide range of non-dimensional parameters that are present in this problem, namely the coupling parameter P. the Prandtl number Pr and the heat generation parameter Q. The variations of the local heat transfer rate as well as the interface temperature and the friction along the plate and typical velocity and temperature profiles in the boundary layer are shown graphically. Numerical solutions have been consider for the Prandtl number Pr=0.70