Comm. Korean Math. Soc. 9 (1994), No. 2, pp. 449-465

EFFICIENT PARALLEL ITERATIVE METHOD FOR
SOLVING LARGE NONSYMMETRIC LINEAR SYSTEMS

JAE HEON YUN

1. Introduction

The two common numerical methods to approximate the solution of
partial differential equations are the finite element method and the fi-
nite difference method. They both lead to solving large sparse linear sys-
tems. For many applications, it is not unusal that the order of matrix is
greater than 10,000. For this kind of problem, a direct method such as
Gaussian elimination can not be used because of the prohibitive cost. To
this end, many iterative methods with modest cost have been studied and
proposed by numerical analysts.

The classical Conjugate Gradient (CG) method of Hestenes and Stiefel
[9] with some preconditioning technique is one of the most effective iter-
ative methods for solving large sparse symmetric positive definite linear
systems. However, this algorithm fails in general for nonsymmetric linear
systems. In the last 15 years, a large number of generalizations of the CG
method have been proposed for solving nonsymmetric linear systems [7, 8,
11, 12, 13]. All of the iterative methods developed to date for nonsymmet-
ric indefinite linear systems are either slow converging or converge fast only
for very special cases. The Generalized Conjugate Residual (GCR) method
[7] and the Generalized Minimum Residual (GMRES) method [12] are typ-
ical examples of those for solving nonsymmetric linear systems. Through-
out this paper, consider the linear system Az = b, where A is a large sparse
nonsymmetric matrix of order n with real coefficients. Let M denote the
symmetric part of the matrix A, that is, M = (A+ AT)/2. If the matrix M
is (positive or negative) definite, then the matrix A is called (positive or
negative) definite. Given a set of vectors {pg, p1,. .., Pk}, let {po, p1,-- -, Pk)
denote the subspace spanned by {po, p1,...,pr}. For a given vector ro, let
the m-th Krylov subspace K,,(A,ro) denote (rq, Arg, ..., A™ 1rg). Both

Received August 21, 1993.

This paper was supported (in part) by NON DIRECTED RESEARCH FUND,
Korea Research Foundation, 1992

450 Jae Heon Yun

the GCR and GMRES methods are based on minimizing the norm of the
residual vector over a Krylov subspace. The disadvantage of these methods
is that the computational costs and storage requirements per iteration are
prohibitively high when the number of iteration steps is large. To avoid
this problem, the restarted versions GCR(k) and GMRES(k) of the above
algorithms which involve at most k previous direction vectors are generally
used.

More and more vector and parallel computers with a hierarchy of stor-
age, such as the CRAY-2, Alliant FX/8, and IBM 3090, have been devel-
oped and made available to the engineers and numerical analysts in recent
years. To take advantage of full capabilities of current advanced multipro-
cessors, a great deal of efforts need to be made in the search for efficient
and parallel implementations. For example, to make efficint use of the
memory hierarchy we must keep the data either in cache or local memory
or in vector registers as long as possible. For multiprocessing, we must
reduce the number of synchronization points in numerical computations
since processor synchronization is a severe bottleneck in achieving peak
performance, see [5] for more details.

The goal of this paper is to develop an efficient parallel iterative algo-
rithm, specially well-suited for computers with a shared memory, which
does not break down even for nonsymmetric indefinite linear systems. This
paper is organized as follows. In Section 2, we establish a necessary and
sufficient condition which causes a breakdown of the GCR algorithm when
it is applied to indefinite linear systems. It is also shown that the well-
preconditioned GCR method does not break down until convergence even
for indefinite linear systems. In Section 3, a vector and parallel implemen-
tation of the restarted algorithm GMRES(k) is presented, and then an-
other algorithm called GMORTH(k) which performs better on the CRAY-
2 than the GMRES(k) for small values of k is proposed and parallelized. In
Section 4, we describe the test problem considered and we present perfor-
mance results of these two algorithms on the CRAY-2 vector and parallel
computer. Lastly, performance comparisons for both algorithms are made
and some conclusions are drawn.

2. GCR algorithm applied to indefinite linear systems

We first consider the generalized conjugate residual method(GCR) to
solve Az = b, where A is a nonsingular and nonsymmetric matrix of order

Parallel iterative method for nonsymmetric linear systems 451

n. The GCR algorithm that works for the matrix A being (positive or
negative) definite is described.

ALgoriTHM 1: GCR
1. Choose z¢ and rg = b— Axy
2. Set po =19
3. Compute Apg
For : =0,1,...,k,..., until satisfied, do:
4. o; = riApi)

(Api,Api)
3. Tip) = T; + o;p;
6. Tig1 =T — Ol,'Ap,'
If || ri41 ||2 satisfies a certain criterion, then stop
1. Compute Ar;qy
8. hy=—{pegal 0< <
9 Pit1 = Tiy1 + Yoo hiiD;

10. Apiy1 = Arigr + 3o hjiAp;
Before we go further, the basic relations among the vectors generated
by this algorithm which are proved in {7] are given below:
(1.a) (Api, Ap;) = 0if 1 # 7, (1.b) (riy Ap;) =0if e >3
(IC) (Api,Ap,') < (AT,',AT‘i), (1(31) (T,',Api) = (T‘,',AT‘,')
(1.€) {poy---+pi) = {ro,---,7i) = Kig1(A, 7o)
(1.f) ;41 minimizes the residual norm || b — Az ||, over the affine
space Zo + (Po, .-+, Pi)-

It is shown in [7] that if A is definite, then the GCR method produces a
sequence of approximations z; which converges to the exact solution. Now
we will show that GCR may break down when A is indefinite. Note that for
indefinite A, it may happen that (r;, Ap;) = (ri, Ar;) = (ri, Mr;) = 0 and
hence «; in step 4 is equal to 0. It is clear that p; # 0 implies r; # 0. From
now on, it is assumed unless otherwise stated that the GCR method is
applied to linear systems with indefinite matrices.

THEOREM 2.1. Suppose that p; # 0 for all j = 0,1,...,i. If o; = 0,
then p;1; = 0 and hence the GCR breaks down at the (i + 1)-th iteration.

Proof. Since a; = 0 and p; # 0, riyy = r; # 0. So step 9 becomes
Pi+1 = Ti + X0 hjipj. By relation (1.e), piy1 € (po,p1,.-.,pi). Thus,

Api+1 € (Ap07 Apl, SRR Apl)

452 Jae Heon Yun

From relation (1.a), it is clear that Ap;;, belongs to the orthogonal com-
plement of (Apoy, Ap1, ..., Ap;). Hence Ap;y; = 0, so that p;;; = 0 since A
is nonsingular. At the (¢ + 1)-th iteration, a division by zero takes place
when computing a;41, which causes a breakdown of the GCR algorithm.

EXAMPLE 2.2. Let A be a skew-symmetric matrix. Since AT = —A, for
any nonzero residual vector ry

(TOaAPO) = (TO’ATO) = _(TO,ATO)a

which implies (ro, Apo) = 0. Thus, ap =0, r; = ro # 0, and p, = 0, so
that GCR breaks down.

H A is definite, it can be easily shown that p; = 0 implies r; = 0. How-
ever, the above example shows that this does not hold for an indefinte
matrix A. Therefore, p; = 0 is a happy breakdown for a definite matrix
A. In the following theorem, the converse of Theorem 2.1 is established.

THEOREM 2.3. Suppose that p; # 0 for all j = 0,1,...,7 and riy1 #
0. If o; # 0, then p;y1 # 0, ie., the GCR does not break down at the
(7 + 1)-th iteration.

Proof. First consider the case for i = 0. Assume that p, = 0. Then, from
step 9 11 = —hoopo = —hooro. Since 11 # 0, hoo # 0. From (ry, Apo) = 0,
we have (1o, Apy) = 0 which implies ag = 0. Hence, the theorem holds
for ¢ = 0. Next, consider the case for ¢ > 1. Since p; # 0 for all j =
0,1,...,2, by Theorem 2.1 a; # 0 for all j = 0,1,...,(— 1). Assume
that p;;; = 0. Then, from step 9 and relation (1.e), it can be seen that

i1 € (To,T1,...,7;). So, there exist constants Sy, (4, ..., B, not all zero,
for which
(2.1) Y i=0 BiTi = Ti1.

Taking the inner product with Apy and using relation (1.b),

IBO(TO7 ApO) = Z /Bj(rj’ ApO) = (Ti-{v-l)ApO) = 0.
j=0

Since ap # 0, (ro,Apo) # 0 and hence B, = 0. Thus, equation (2.1)
becomes

i
> Birj = rin.
i=1

Paralle] iterative method for nonsymmetric linear systems 453

Taking the inner products with Ap,, Ap,,..., Ap;_1 consecutively, simi-
larly one obtains f, = B, = -+ = f;—; = 0. Thus r;y; = Bir; is ob-
tained. Since (ri41, Ap;) = Bi(ri, Ap;) = 0, B; = 0 or (r;, Ap;) = 0. On the
other hand, §; # 0 since riy; # 0. Hence (r;, Ap;) = 0, so that o; = 0
which completes the proof.

If ;41 = 0 in the above theorem, then GCR algorithm is terminated
and gives the exact solution to Az = b. Thus, the hypothesis r;41 # 0 in
Theorem 2.3 just means that the GCR does not produce the exact solution
at the i-th iteration. From Theorems 2.1 and 2.3, we established a neces-
sary and sufficient condition which causes a breakdown of the GCR when
applied to indefinite linear systems. Now we modify the GCR method to
obtain an algorithm which does not break down for indifinite problems. To
do this, we need to show a preliminary result.

Suppose that p; # 0 and r; are generated from GCR algorithm. Since

i APi T ATy

rip1 = 1; — o;Ap; and o; = Uirdny = ém)i—), one obtains by (1.c)

I riva I3 = {7 15 —eu(rs, Ary)

. Ar. \?
= T 2 1—’(T s !) .
bl | = e T T

i AT‘,’ 2
” T 2 1-— (5) .
2 | =\ Tan s

Put 7 = fe, Ar; = pA%-, and || 7 — Ar; [,= e Then, by a simple
—_ 2

1 — 5. Hence,
(2.2) I riva fl2 < M%E Il e flz -

Let f(e) = 3%2, where 0 < ¢ < 2. Since f(e) has the minimum 0 at

¢ =0 or 2 and the maximum 1 at € = v/2, 0 < f(e) < 1 on [0,2] and the
following theorem is obtained.

IA

calculation, (7}, Ar;)

THEOREM 2.4. Suppose that p; # 0 and r; are generated from the GCR
algorithm, and let ¢ be defined as above. If ¢ = 0 or 2, that is, there exists
a nonzero constant é such that Ar; = ér;, then a; # 0 and r;yy = 0. If
€ = /2, then o; = 0 and hence the GCR breaks down.

The above theorem showed that if r; is an eigenvector of the matrix A,

454 Jae Heon Yun

then r;,; = 0. In practical, it is very unlikely for r; to become an eigenvec-
tor of A. Thus, to make use of the idea in Theorem 2.4 the GCR algorithm
is modified as follows. Replace step 2 in the GCR with p, equal to a vector
wp and replace ;41 in steps 7 through 10 with a vector w;;;. For exam-
ple, step 9 in the GCR is changed to piy; = wiyr + Z;zo h;ip;. Note that
(ri, Api) = (ri, Aw;) since (1.b) still holds for this modified GCR. From
the similar argument to the proof of Theorem 2.4, if w; is chosen so
that Aw; = ér; for an arbitrary nonzero constant §, then o; # 0 and
ri+1 = 0. For simplicity, let § = 1 or —1. The ideal choice for w; is §A~1r;,
but solving this linear system has exactly the same kind of difficulties we
have at the original linear system. To circumvent these difficulties, we
choose a w; so that Aw; is a good approximation to r;. Notice that § = 1
is chosen since f(€) converges to 0 more rapidly as e approaches 0 than
as € approaches 2, where ¢ denotes || 7; — Aw; |l2. Since r; is given, find-
ing a w; such that Aw; = r; leads to finding an easily invertible matrix,
say M, such that M is a good approximation of A. Here M is called a
preconditioner in the literature. Some techniques for finding such a M are
described in [10]. In general, the choice of an easily invertible matrix M is
an art in itself and depends on the application problem, the architecture of
high-performance computer, and so on. Once such a M is chosen, we can
easily find a w; such that Mw; = r;. For this w;, ¢ may be close to 0, so that
from (2.2) the convergence of || ri;; ||z to 0 may be accelerated. We call
this modified GCR with a preconditioner M the preconditioned GCR. It
can be easily shown that the preconditioned GCR satisfies (1.a), (1.b),
(lf)v (Apt,Apt) < (Awi, Awi)s (T{,AP;‘) = (’l",’,A’U)i), and

(Po,Pla e ,Pi) = langlewg, w, . .. ,wi) = Ki+l(M—1A7 wo)-

Using the above relations and Mw; = r;, Theorems 2.5 and 2.6 whose
proofs are analogous to Theorems 2.1 and 2.3 respectively can be obtained.

THEOREM 2.5. Suppose that p; # 0 for all j = 0,1,...,i. If o; = 0,
then p;y1 = 0 and hence the preconditioned GCR breaks down at the
(2 + 1)-th iteration.

THEOREM 2.6. Suppose that p; # 0 for all j = 0,1,...,7 and rjyy #
0. If a; # 0, then p;yy # 0, i.e., the preconditioned GCR does not break
down at the (¢ + 1)-th iteration.

Parallel iterative method for nonsymmetric linear systems 455

Finally, it will be shown that the preconditioned GCR does not break
down until convergence even for indefinite linear systems if the precondi-
tioner M is well chosen.

LEMMA 2.7. Let M = A — E and let r; # 0 be a given vector. If
| EAY |2 = || I— MA™ |2 <1, then M is invertible,

| Awi—rifls _ || EA™

[l — 1= EAY |2
and
LA,
I A=t e [Mz = lirilla

where w; Is a unique vector such that Mw; = r;.

Proof. Since M = (I — EA™')A and || EA™! ||z < 1, it follows that
I — EA™', and hence M, is invertible. Moreover, one has
Aw; = AM™'r; = (I — EA™Y)"Ir;. Since | EA7! ||; < 1,
(I-EA Y '=I4+EA+(EA) 4.

It follows that Aw; —r; = (EA™* 4+ (EA™")?* + -+) r;. Hence

| EAT" |2
” w; T'i ”2 = 1= ” EA-1 ”2 “ ri ”2’

which proves the first inequality. Since || r; ||2 < || M |2 || w: ||z,

[Awely | Au] Az
[rillz — I Ml lwillz = | M [l2=0 || 2|2
: o1 -1 e AT |2 . I
Since || A7t ||37= lr;lg% W [14, p.182], the second inequality is proved.
z 2

THEOREM 22.8. Let M = A — FE be a nonzero matrix and let o =
(-—~———”A_1”21 ”M“2) . Suppose that r; # 0 is a given vector. If || EA™! |2 <

iﬂ% votl then M is invertible and (r;, Aw;) > 0, where w; is a unique
vector such that Mw; = r;.

456 Jae Heon Yun

Proof. Since g“—‘*—l)—;———— Vatl <1 for @ > 0, by Lemma 2.7 M is invert-
ible. From || Aw; ~ r; |2 = (Aw;, Aw;) + (ri,ri) — 2(r;, Aw;), one has

2riy Aw) _ (u Au, ||2)2 _ (n Aw; =, uz)?

(rismi) | 7i ||z Il 7i ||z

Using Lemma 2.7, one obtains

2(r;, Aw;) | EA], \?
i UL nbhel? R QY (| b bl L .
(rir7) (1— TEA],) ©°

Letting 8 =|| EA™" ||, this inequality becomes
2(ri, Aw;) > af?-2(a+1)B+(a+1)
(ri,rs) — (1-8)? '
It is easy to show that 22 2_2((0’1"_'1‘3)%+(°‘+1) >0for f < LQ—H)—;——— Vetl There-
fore, (r;, Aw;) > 0.

Notice that gﬁﬂ);— Yotl in Theorem 2.8 is a real number between 1 and
1 for any @ > 0. From this fact, the following theorem can be obtained.

THEOREM 2.9. Let M = A—E andro # 0. If || EA™" ||; < 3, then the
preconditioned GCR with preconditioner M does not break down until a
certain convergence criterion is satisfied.

Proof. Since rq # 0, po # 0 and by Theorem 2.8 (rg, Awg) > 0. Note
that a; = ((/%% and || rig1 12 = || 7: |13 —ei(ri, Aw;). Hence o > 0 and
Il 1+ ll2 < |l 7o |l2 If r; = 0, then the preconditioned GCR produces the
exact solution. If r; # 0, then by Theorem 2.6 p, # 0 and by Theorem
2.8 (r1,Aw;) > 0. Hence a; > 0 and || r; ||2 < || r; ||2- Continuing the
same procedures as above, we can see that the preconditioned GCR does
not break down until a certain convergence criterion is satisfied.

EXAMPLE 2.10. Consider Az = b, where

(4 4) ()

Parallel iterative method for nonsymmetric linear systems 457

0 09
-09 0

_ 0 0.1 1[0 =1 2 _[01 0
E—<—0.1 0) A ‘(1 0) and BA “(0 o.1>‘
Since || EA™! ||, = 0.1, by Theorem 2.9 the preconditioned GCR does not
break down until convergence. Let’s try the preconditioned GCR for this
example. For given ¢ = (0,0)7, we have ro = (1,1)7, pp = wo = M~'ry =
0(—1,1), and ag = 2. Hence z; = (—1,1)7 which is the exact solution

09f Az = b. However, the GCR breaks down for this example.

Clearly, A is indefinite. Choose M = () . Then

3. Parallel algorithms

In Section 2, we studied a necessary and sufficient condition which
causes a breakdown of the GCR, and we showed that the preconditioned
GCR does not break down if a preconditioner matrix M is well cho-
sen. However, choosing such a M is not an easy problem. So we con-
sider the GMRES method [12] which has better parallel structure than
the GCR and does not break down for indefinite linear systems. Notice
that the GMRES has some practical difficulties. That is, when the num-
ber of iteration steps, say [, increases, the number of vectors requiring
storage increases like [and the number of arithmetic operations increases
like I?n, where n refers to the order of matrix A. For this reason, only the
restarted version of the GMRES denoted by GMRES(k) is described and
parallelized below, where k is a fixed integer parameter.

ALGORITHM 2 : GMRES(k)
1. Choose zq
2 'r‘0=b—Ax0a,ndp1=“—TTO"“—2
3. For:i=1,2,...,k do:
4. Compute Ap;
5. hj,-=(Ap,~,pj),j=1,2,...,i
6 Piv1 = Api — X1 hjip;
If p;y1 =0, set k:= 17 and then go to step 9

7. hiv1i = || Bit1 [l
if 2 = k, then go to step 9
8. Diy1 = ﬁi-i-l/hi-l-l,'i

9. Form the approximate solution :

458 Jae Heon Yun

10. Define Hy to be the (k + 1) x k (Hessenberg) matrix whose
nonzero entries are the coefficients A;,,,, 1 <1< (m + 1),
1 <m < k and define P, = [py,ps,. .-, px)- Find the vector yx
which minimizes | || ro ||z &1 — Hiy ||2 over all vectors y € R,
where e; = [1,0,...,0]T € R+,

11. Tk = 2o + Pryx

12. Check the residual norm || ry ||2:
If || rx ||2 satisfies a certain criterion, then stop.
Else, set zo := z; and then go to step 2

The set {p1,p2,...,pr} generated from the GMRES(k) algorithm forms
an l-orthonormal basis of the k-th Krylov subspace Ki(A,ro) and zj
minimizes the residual | & — Az ||; for all z in the affine subspace z¢ +
Ki(A,1o). It was shown in [12] that if ;11 = 0 in step 6, then z; = xo+ Py;
provides the exact solution of Az = b (i.e.,, r; = 0). Thus GMRES(k)
does not break down even for indefinite linear systems. But, there are
instances where the residual norms produced by GMRES(k), although
nonincreasing, do not converge to 0. The least squares problem min,egx || ||
ro ||2 e1— Hiy ||z in step 10 is solved using a QR factorization of the upper
Hessenberg matrix Hy. The QR factorization of Hy is carried out using
Givens rotations, and it is done progressively as each column of it appears,
i.e., at every iteration in step 3. This allows the residual norm || 6— Az; |,
to be calculated without computing z; at each iteration in step 3. See [12]

for more details on GMRES(k]).

Now we consider the vector and parallel implementation of GMRES(k)
on the CRAY-2 computer with vector registers and a shared memory. The
basic vector computations required by GMRES(k) are vector inner prod-
ucts (SDOT), vector updates, and sparse matrix times vector operations.
Each of steps 2 and 4 involves a sparse matrix times vector operation, so
we will first consider parallelization of this operation. The storage format
for a sparse matrix A is as follows: Only the non-zero elements of the
matrix A are stored in an array, say PA, counting across rows (except for
the diagonal entry, which must appear first in each row). In other words,
for each row in the matrix A, put the diagonal entry in the array PA and
then put in the other non-zero elements going across the row (except the
diagonal) in order. Let n, denote the number of processors of the com-
puter to be used. For simplicity of exposition, assume that n is divisible by
np. The matrix A is divided into n, row blocks such that each row block

Parallel iterative method for nonsymmetric linear systems 459

is an m X n submatrix of A, where m = n/n,. If we denote n, row blocks
by A, As,..., A,,, then the computation of Az can be done in parallel
by assigning the computation of A;z to the Processor j, where ¢ € R"
and j = 1,2,...,n,. This provides a good load balancing if the non-zero
elements of A are well distributed. Since only the non-zero elements of
A are stored, special care is needed for parallel implementation of this
operation.

Step 5 has ¢ SDOTs which are parallelized by assigning them to n,
processors. This is done using Autotasking directives on the CRAY-2,
see [1] for Autotasking directives. If ¢ is not divisible by n,, a poor load
balancing can be expected. Since the number of floating point operations
in SDOT is O(n), this problem can be ignored. Numerical experiments in
Section 4 also prove this.

Steps 6 and 11 have ¢ and k vector updates, respectively. Each of mul-
tiple vector updates in steps 6 and 11 can be grouped together in a single
general matrix times vector operation (SGEMV). The functionalities of
SGEMYV are described in [6]. The functionality of SGEMV used in these
steps is y := By + aBz, where z and y are vectors, o and f are constants,
and B is a general matrix. Since SGEMV was already vectorized and
parallelized by the vendor on the CRAY-2 [2], no further efforts are nec-
essary for these steps. Step 11 is the typical one that the GMRES(k) has
a better parallelism than the GCR. This can be explained as follows. The
GCR does only one update of the approximate solution zg per iteration,
while the GMRES(k) does k updates of zo at a time, so that the num-
ber of memory references is reduced by reusing vector registers and more
coarsely grained parallelism is achieved. The number of synchronization
points is also reduced.

Steps 7 and 8 are vectorized, but they are conditionally parallelized. This
means that they are parallelized if n is greater than a certain number which
is internally set at run-time on the CRAY-2. These steps are parallelized
using FPP directives, see [1] for FPP directives. Since k is usually much
smaller than n, the number of arithmetic operations involved in step 10 is
much smaller than those in other steps. Thus, step 10 is not parallelized
and most of its arithmetic operations are executed in scalar mode. In
most of application problems, the value of £ commonly used by many
researchers ranges from 5 to 20.

As was seen in the above, step 10 in the GMRES(k) is not paral-

460 Jae Heon Yun

lelized and is mostly executed in scalar mode. This is a main motiva-
tion for proposing another algorithm, called GMORTH(k) from now on,
which has better vector and parallel structures than GMRES(k). The algo-
rithm GMORTH(k) first forms an l;-orthogonal basis { Ap, Apa,. .., Api}
of the subspace AKi(A,ro) = (Aro, Alro,...,A*ro) as well as a basis
{p1,p2,---,pr} of the Krylov subspace K(A,ro), and then it requires the
residual minimization property over an affine subspace zo+ Ki(A, o). Let
zr € zo + Ki(A,ro). Since Ki(A,ro) = (p1,p2,-..,Px) , We can put
T = xp + Zle a;pj, where a;’s are some constants. The a;’s are cho-
sen such that the residual norm || b — Az, || is minimized. Using the
property (Ap;, Ap;) = 0 for < # j, we can easily obtain for : =1,2,...,k

(rOaApi) 2 2 i
a; = ~————and ||r||;=1|rollz =) oj(ro,Ap;).
G and 7=l =2 (o A)
Thus, the GMORTH(k) algorithm based on the Arnoldi process for the
subspace AK(A,ro) is obtained.

ALGORITHM 3 : GMORTH(k)
Choose z¢
ro = b— Azo and compute || 7o ||
Set p; := r¢ and then compute Ap,
For:=1,2,...,k do:
a; = (ro, Ap;)/(Api, Ap:)
| 7 |3 = |l rica I3 —exi(ro, Ap:)
If || r; ||2 satisfies a certain criterion, then go to step 15
If : = k, then go to step 11
7. Compute A%p; = A(Ap;)

S U o

8. hji = (A%p;, Ap;)/(Apj, Ap;), 3 = 1,2,...,1
9. Pit1 = Api — T4, hjip;
10. Apiyr = A2p¢' - Z}:l h;; Ap;

11. Form the approximate solution and residual:
12. T =To+ Z'?=1 a;p;

13. Tk =To — Lj=1 @; Ap;

14. Set zg = Tk and 7 1= rt, and then go to step 3
15. z; = o + X_i_; @;p; and then stop

Next, one important theorem which ensures that the GMORTH(k) does
not break down even for indefinite linear systems is provided.

Parallel iterative method for nonsymmetric linear systems 461

THEOREM 3.1. Suppose that p; # 0 for all j = 1,2,...,i. If r; # 0,
then p;yy # 0, i.e., the GMORTH(k) does not break down at the (¢ +1)-th
iteration.

Proof. Assume that p;;; = 0. From step 9, Ap; = Z§=1 hjip;. Since
Ki(A,r0) = (p1,p2s .- -, i), there exist constants fy, A, . .., B, not all zero,
for which Ap; = ¥_, B;A’~'ro. Thus we have

(3.1) Biro = Ap; — Ty B A Mrg.

Now we want to show that 8 # 0in (3.1). Suppose that ; = 0. Then from
(3.1), Ap; = i, B; AT rq. Since (Ap,..., Api—1) = (Arg,..., A" g >
and p; # 0, there exist some constants 7;’s, not all of which are 0, such that
Ap; = ;‘:11 7v;Ap;. Hence p; = ;;11 7;pj, where constants +y;’s are not all
0. This is a contradiction to the linear independence of (py, ..., p;). Since it
was shown that #; # 0, by (3.1) ro € (Apy,... ,A_p,-). Notice that r; = rg—
Y i_; @jAp; and o;’s are chosen so that || ro — 351 £;Ap; ||2 is minimized
over all real numbers ¢;’s. Hence, ro € (Apy, ..., Ap;) implies r; = 0. This
completes the proof.

The vector and parallel implementation of the GMORTH(k) on the
CRAY-2 is described in the following. Each of steps 2, 3, and 7 involves
a sparse matrix times vector operation whose parallelization was already
discussed in the GMRES(k). Each of steps 9, 10, 12, and 13 can be replaced
with a general matrix times vector operation (SGEMV) which was already
optimized for the CRAY-2 with vector and parallel processing. Most of
arithmetic operations required in other steps are vector inner products
that can be also parallelized using FPP directives on the CRAY-2 when
n is large. Notice that almost all of arithmetic operations involved in
GMORTH(k) are executed in vector and/or parallel mode. Arithmetic
operations executed in scalar mode are 1 division in step 5, 1 multiplication
in step 6, and ¢ divisions in step 8. The richness of vector and parallel codes
is a big advantage of this algorithm as compared with the GMRES(k).

As can be seen in the GMORTH(k) algorithm, it requires storage for
both {p;}%_, and {Ap;}%_,, whereas the GMRES(k) requires storage for
only {p; }f=1. Since k is usually small, this is not a big problem for high
performance supercomputers with large memory. The number of vector

and scalar operations for both the GMRES(k) and GMORTH(k) is sum-

462 Jae Heon Yun

marized in Table 1 (only multiplications and divisions are counted). In this
paper, vector operations refer to arithmetic operations which involve vec-
tors of size n, and scalar operations refer to arithmetic operations which
involve vectors of size < k. The vector operations used in these two algo-
rithms are SDOTs and vector updates, and multiple vector updates are
grouped together in a single SGEMV wherever possible. SPMV in Table
1 denote a sparse matrix times vector operation. If we denote the num-
ber of nonzero elements in A by NZ, then the number of multiplications
required for executing one SPMV operation is NZ.

Table 1. Arithmetic operation counts for completing one period

of the GMRES(k) and GMORTH(k)

Algorithm | Scalar Operations | Vector Operations | SPMV
GMORTH(k) %?i @E° 42-51;2" .

Table 1 shows that the GMRES(k) has less vector operations, but
more scalar operations, than the GMORTH(k). Since k is usually very
small compared with n, the number of total arithmetic operations in GM-
RES(k) is less than those in GMORTH(k). So, there is no doubt that GM-
RES(k) will perform better than GMORTH(k) on scalar computers. How-
ever, for vector or parallel computers the performance of an algorithm
depends upon both the number of total arithmetic operations and how
much portion of a code is vectorizable or parallelizable. This is one reason
why GMORTH(k) is considered even if it has more arithmetic operations
than GMRES(k). Next section will show that for small values of & the
GMORTH(k) performs better than the GMRES(k) on the CRAY-2 vec-

tor and parallel computer.

4. Numerical results

In this section, we present numerical results for both the parallel GM-
RES(k) and the parallel GMORTH(k) on the CRAY-2 computer at the
National Center for Supercomputing Applications (NCSA) in Illinois. The
CRAY-2 has 4 processors and a central memory of 4 gigabytes, and
each processor has 8 64-bit vector registers of length 64. Wall-clock time
(elapsed time) was measured to evaluate the efficiency of parallel algo-
rithms. All test runs were performed using 64-bit arithmetics (i.e., single

Parallel iterative method for nonsymmetric linear systems 463

precision on the CRAY).
The test problem considered is to solve a block tridiagonal linear system
Az = b with
D B 4 «
C D B B 4 «
: and D=

¢ D B B 4 «

C D B 4
wherea = —1+6,8=-1-6,C =(-1—+)I,and B = (-1 +~)I. This
kind of matrix A comes from the five point discretization of a linear elliptic
partial differential equation involving a nonselfadjoint operator. The right-
hand side vector bis chosen so that b = A[1,1,...,1]7. The initial vector z,
is set to 0 for both algorithms to make a fair comparison. The termination

criterion (i.e., convergence criterion) used for both algorithms is Jfl—rbi”“f <

1078,

Test runs were made for 4 different pairs of § and v; § = v = 0.2,
6=02and y=0,8=+=0.01, and § = 0.01 and v = 0. Since the same
conclusions were obtained from these 4 pairs of § and v, we only report
the performance results for § = v = 0.2 in Tables 2 to 4. Wall-clock time is
reported in seconds. ITER refers to the number of iterations required for
getting an approximate solution which satisfies the convergence criterion
mentioned above, and n, denotes the number of processors used for exe-
cution. The numbers in the parentheses represent parallel speedups which
are calculated using the wall-clock time obtained from serial execution.

From Tables 2 to 4, performance results for both the GMRES(k) and
GMORTH(k) can be summarized as follows. The number of iterations
to get an approximate solution with a specified accuracy is almost the
same for both algorithms, but the GMORTH(k) performs better than the
GMRES(k) for both ¥ = 10 and 20. For example, the execution time
for GMRES(10) is 5 to 8% longer than that for GMORTH(10). For both
algorithms, k¥ = 10 produces better performance than k¥ = 20. Unfor-
tunately, the optimal number of ¥ depends upon application problems
considered. Notice that the value of k commonly used ranges from 5 to
20. For small values of k£ < 20, we recommend the use of GMORTH(k)
in solving large sparse nonsymmetric linear systems on vector computers
even if it has more arithmetic operations than the GMRES(k). If k is large,

464 Jae Heon Yun

then the use of GMRES(k) is recommended. Both the parallel GMRES(k)
and parallel GMORTH(k) perform very efficiently on the CRAY-2 with 4

processors, see parallel speedups in Tables 2 and 3.

Table 2. Performance results for GMRES(10)
Vo [ITER n,=1 np =2 n, =4
48 158 1.2705 0.6611(1.92) 0.3529(3.60)
64 | 207 29980 1.5514(1.93) 0.8057(3.72)
100 | 261 9.1983 4.6828(1.96) 2.3972(3.84)

Table 3. Performance results for GMORTH(10)
v |ITER n,=1 np =2 n, =4

48 160 1.2109 0.6310(1.92) 0.3345(3.62)
64 | 206 2.7560 1.4302(1.93) 0.7389(3.73)
100 | 261 8.4880 4.3335(1.96) 2.1974(3.86)

Table 4. Performance results for GMRES(20) and GMORTH(20)

GMRES(20) | GMORTH(20)
7 [TTER n, =1 |ITER n, =1
48 194 1.5407 196 1.5467
64 | 258 3.6782 | 256 3.5932
100 | 359 12.3478 | 358 12.0915

References

1. Cray Research, Inc., Autotasking User’s Guide(SN-2088), Eagan, Minnesota, 1988.

2. Cray Research, Inc., Volume 8 : UNICOS Math and Scientific Library Reference
Manual(SR-2081), Eagan, Minnesota, 1991.

3. A. T. Chronopoulos, A class of parallel iterative methods implemented on multipro-
cessors, Technical Report UITUCDCS-R-86-1267, University of Illinois at Urbana,
1986.

4. A. T. Chronopoulos and C. W. Gear, On the efficient implementation of precondi-
tioned s-step conjugate gradient methods on multiprocessors with memory hierar-
chy, Parallel Comput., 11(1989), 37-53.

5. 3. J. Dongarra, 1. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving linear
systems on vector and shared memory computers, SIAM, Philadelphia, Pennsylva-
nia, 1991.

6. J.J. Dongarra, J. J. Du Croz, S. J. Hammarling, and R. Hanson, An extended set of
Fortarn basic linear algebra subprograms, ACM Trans. Math. Software, 14(1988),
1-17.

7. S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods
Jor nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20(1983),
345-357.

10.

11.

12.

13.

14.

Parallel iterative method for nonsymmetric linear systems 465

H. C. Elman, lterative methods for large sparse nonsymmelric systems of linear
equations, Research Report 229, Yale University, 1982.

. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear

systems, J. Res. Nat. Bur. Standards 49(1952), 409-435.

T. Meijerink and H. van der Vorst, An iferative solution method for linear systems
of which the coefficient matriz is a symmetric M-matriz, Math. Comp. 31(1977),
148-162.

Y. Saad, Krylov subspace methods for solving large unsymmetric linear sys-
tems, Math. Comp. 37(1981), 105-126.

Y. Saad and M. H. Schultz, GMRES: a generalized minimum residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7(19886),
856-869.

P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear sys-
tems, SIAM J. Sci. Statist. Comput. 10(1989), 36-52.

G. W. Stewart, Introduction to matriz computations, Academic Press, Inc., Or-
lando, Florida, 1973.

Department of Mathematics
College of Natural Sciences
Chungbuk National University
Cheongju, 360-763, Korea

E-mail address: gmjae@cbucc.chungbuk.ac.kr

