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CONVERGENCE OF NONLINEAR ALGORITHMS

YOUNG S. LEE AND SIMEON REICH!

1. Accretive operators and nonlinear semigroups

Our purpose in this paper is to prove a new version of the nonlinear
Chernoff th eorem and to discuss the equivalence between resolvent
consistency and converge nce for nonlinear algorithms acting on differ-
ent Banach spaces. Such results are useful in the numerical treatment
of partial d ifferential equations via difference schemes.

Let X be a Banach space with norm | |. If 4 is a subset of X x X
and r € X, welet Ar = {y € 4zr : [z, y] € A}. The domain of A is
D(A)={z € X : Az # 0} and the range is R(A4) = U{dz : z € D(A)}.
The inverse of A is defined by A 'y ={re X :y € Ar}.

Let w be non-negative and let A C X x X. The operator A +w/ is
said to be accretive if

[(z1 +ry1) — (22 + ry2)| > (1~ rw)|z; — 4|

for all [z;, yi]€ A, i=1, 2, and all » > 0.
For each r > 0 with rw < 1, J2 will denote the operator (I +rA4)~!
with D(JA) = R(I +rA) and R(J?) = D(A). It will be called
the resolvent of A.
Let A 4 wI be accretive. The operator A + wl is said to be m-
accretive if R(I +rA) = X for all » > 0 with rw < 1.
Let C be a subset of X. A semigroup of type w on C is a function
S :[0, 00) x C — C satisfying the following conditions:
(i) S(0)z =z for z € C.
(1) S(t)S(s)z = S(t+s)xforr € C and ¢, s > 0.
(iii) For each z € C, S(t)z is continuous in t.
(iv) |S(t)e — S(t)y| < e“'|x —y|for x, y € C.
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If A+ wl is accretive and R(I +rA) D cl(D(A)) for all sufficiently
small r > 0, then there exists a semigroup of type w on cl(D(A4)) such
that for each z € cl(D(A)) and ¢t > 0,

S(t)z = lim (I + —t—A)_":zr,
n

n—00

uniformly on bounded ¢-intervals (see [7]).
Recall that the duality mapping from X to X™* is defined by

J(z) = {z* € X*: (2, z*) = |z]|* = =" *).
It is known (9] that the accretiveness of A + wl is equivalent to the
following: for each [z;, vi] € A, i =1, 2, there exists z* € J(z1 — z2)
such that
(v1 — y2, %) > —w|z1 — z2|%.
We now present several lemmas which will be used in the sequel. For
more information on accretive operators and nonlinear semigroups, see

(3, 6].

LEMMA 1.1. Let C be a closed convex subset of X andlet T : C —
C be a Lipschitz continuous mapping with Lipschitz constant o > 1.
Then
(1) (I+r(I-T)) " exists for 0 <r < (o —1)7!
and (I +r(I-T)"':C—C.
(ii) p~'(I — T) is Lipschitz continuous
and p~'(I — T) + wI is accretive for p > 0,
where w = —";(af —1).
For a proof of Lemma 1.1, see Brezis and Pazy [4]

LEMMA 1.2. Let T be a Lipschitz continuous (with constant a > 1)
self-mapping of a closed convex subset C of X. Then T — I generates
a semigroup S(t) of type a — 1 on C and

1S(m)z — T™z| < a™e™ " V{m?(a— 1) + m(a — 1)+ m} 3 |(I — T)a|
forallz € C.
For a proof of Lemma 1.2, see Miyadera and Oharu [12].

The next lemma is also known (cf. [3]). We give a direct proof
for completeness. In Section 3 we will need the uniform continuity of
duality mappi ngs of a sequence of Banach spaces.
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LEMMA 1.3. If X* is a uniformly convex dual Banach space, then

the duality mapping J is uniformly continuous on bounded subsets of
X.

Proof. First we will show that the duality mapping J is uniformly
continuous on the unit sphere of X. Let ¢ be positive and let u, v € X
with |u] =1, |v] =1 and |u — v| < 26(¢), where é(¢) is the modulus
of convexity of X*. Then

(Ju+ Jv, u) = (Ju, u)+ (Jv, v) + (Jv, u—v)
=24+ (Ju, u—-v) 22— |u-—-v|>2(1-46Cc)).

Hence |Ju + Jv| > 2(1 — §(¢)). Since X* is uniformly convex, |Ju —
Jv| < e.

Now let B be a bounded subset of X. Then there exists M > 1 such
that x| < M for all z € B. For a given € > 0, choose 0 < 8’ < £ such
that

€

2M

Take 6§ = min(e/2, (6')%/2) and let z, y € B with |z —y| < 6. If
|z| < &' and |y| < &', then |Jz| = |z| £ ¢ < § and similarly [Jy| < £,
and so |Jz — Jy| < €. Suppose that || > &' or |y| > &', say |z| > &'.

Let u = 37 and |v] = T‘yLl Then

|Ju — Jv| < if lul=|v]=1and |u—v|<é.

zT—y 1 1

S Py R

This implies that

- o] < e —yl Nzl =yl o= —‘yl S2|:1r—lyl'
|| || |z] é
Since § = min(, (6;)2), |u —v] < ¢ and so |Ju — Jv| < 2¢/M. Since
Jz — Jy = |z|(Ju = Jv) + (|z| - [y} Jv,

|Jz — Jy| < M|Ju — Jv| + |z -- y||Jv]

€
< M— .
< qu-}-<5<{-:
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In Section 2 we first consider the approximation of a Banach space by
a sequence of Banach spaces. We then prove our main result (Theorem
2.3) on the convergence of nonlinear algorithms. We conclude this
section with an example.

In Section 3 we establish (under certain conditions) the converse of
Theorem 2.3. Combining the results of Section 2 and Section 3 we
obtain the equivalence between convergence and resolvent consistency
for nonlinear algorithms acting on different Banach spaces.

2. The convergence of algorithms acting on different Ba-
nach spaces

In this section, a new version of the nonlinear Chernoff theorem
is derived. This new version is useful in obtaining approximations of
solutions to differential equations via difference schemes. This result
1s a nonlinear analog of the linear result given by Pazy [13] and also
includes the one space linear [5] and nonlinear [4] results.

First we will consider an approximating sequence {X,} of Banach
space. Let Z and X, be Banach spaces with norm | | and | |, n =
1,2, -+, respectively, and let X be a closed linear subspace of Z. We
will make the following assumption.

ASSUMPTION.
For each n = 1, 2, ... there exist mappings P, : Z — X, and
En : X, — Z satisfying

(Ay) |Pre — Poyl < Mylz —y| forall z, y € Z,
and
|Entyn — Enyn| < Mz|xn — ynln for all 2, yn C nX,. where M, and

M, are independent of n;

(A7) lim |E, P,z — z| = 0 for all x € X;

(As) PoE,z, =z, for all z,, € X,,.

Note that we do not assume that the spaces X, are subspaces of
X, or that the mappings P, and E, are bounded linear operators (cf.
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[16, 17]). The introduction of X,, P, and E, is motivated by the ap-
proximation of differential equations via difference equations, since the
difference operators act on spaces different from the one on which the
differential operator acts. A similar situation occurs in identification
problems (see, for example, [1, 2]). Usually, we can choose X, to be
finite dimensional spaces if X is a function space on a bounded domain.
In the following lemmas, we collect some elementary properties of P,

and E, (see [11]).
LEMMA 2.1. Ify, € X,, n=1,2,--. andy € X, then

lim |Poy —ynlp =0 < lim FEp,y, =vy.
n—oc 00

LEMMA 2.2. Let {un} be a sequence in Z. If limu—oo un = u and
u € X, then

lim E,P,u, = u.
n—o0

Let €2 be a bounded domain in R™. For each n = 1, 2, --- divide
2 into a finite number of disjoint sets

Q=Qn1UQn2U'-'Uan(n)

such that
li di ,.5)) == 0.
"320(151}13&5((") tam ()
Choose z,; € Qnj for each j =1, 2, - [ k(n).

EXAMPLE 2.1. Let Q be a bounded domain in R™. Let Z be the
space of all bounded real valued functions on € with the usual supre-
mum norm and let X = C(R), the subspace consisting of all contin-
uous functions. Let X, = R*®) with the supremum norm. Define

P,:Z - X, by

Pﬂf - (f(xnl)a f(an)a T ;f(l'nk(n)))-
Let E, : X, — Z be defined by

k(n)
Eu= Z UFXQ,,; -

j=1
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Then P, and E, satisfy (A4;), (42) and (43).

Suppose that m = 1 and Q is an interval. Then by using spline
functions we have E,u € X so that we can let Z = X. For example, if
2 = [0, 1], take, for each n, a partition of [0, 1] with

Az=-1— and zx = kQAzfork=1, 2, --- ,n.

n

Then define E, : X,, — X by

F.u= ZukL(nx —1),

=1

where
1+z if —-1<z<0
Liz)=¢ 1~z if 0<zr<1
0 otherwise.

EXAMPLE 2.2. Let € be a bounded domain in R" and let each
Om,; be measurable and connected. Let X = LP(Q) with the usual

L?-norm, and let X, = R*™ with the norm [ulf, = S50 () u; [P

where u = (uy, uz, -+ ,ug(n)). Define P, : X — X, by

1 1
P.f= dr, -+ ————— dr | .
d (u(ﬁnl)/nnlf /L(an<n>)/u.k<n>f )

Let E, : X;, — X be defined by

k(n)
Fou= Z UjXQ,; -

=1

Then P, and E, satisfy (A4,), (42) and (A3).

THEOREM 2.3. Let A+wl be an accretive operator in X satisfying
R(I +71A) D c(D(A)) for all 0 < r < ry and let S be the semigroup
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generated by —A. Let {p,} be a sequence of positive numbers converg-
ing to 0, and for each n let F(p,) be a mapping from a closed convex
subset C, of X, into itself. Suppose that
(1) IF(pn)xn - F(pn)ynln < anlxn - yn’n for all z,, Yn € Cq,
where a, =1+ wpn, + o(p,),
(2) Pu(cl(D(A))) C C, for each n,
(3) limn_o En(I + oI = F(pn))) ' Poz = J2z for all x € cl(D
(A)) and 0 < r < rg.

If {kn} is a sequence of integers such that limn_.. knpn = t, then
lim E,F(pn)* Pz = S(t)x for all z € ¢l(D(A))

and the convergence is uniform on bounded ¢-intervals.

REMARK. Suppose that C,, = X, for each n, A is m-accretive and
{Prn} is asymptotically linear (see [11]). Let A4, = ;{:(an —1). Then
An + wnl are m-accretive operators, where w, = i(an —1). By
Lemma 3.3 in [11] condition (3) in Theorem 2.3 can be replaced by the
following weaker assumptions (3)":

3) hmpy—oo En(l + 3 I—Fipy) “’Pn:c:JA:cforall:tedDA)
Pn p T

1
and some r; > 0.

Proof of Theorem 2.9. Let A, = oW (I — F(p,)). Then by Lemma
1.1, A, + w,I is an accretive operator in .X,, and R(I + r4,) D
c(D(An)) for 0 < r < ro, where w, = ;]n-((zn —1). Let S, be the

semigroup generated by —A,,.
By assumption (3),

im E,J Pz = Jfz  forall & € cl(D(A)).

n—oo

Hence by Theorem 3.6 in [11], we obtain

lim E,S5,(t)Pyz = S(t)z for all z € cl(D(A4))

and the convergence is uniform on bounded ¢-intervals.
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Let S, be the semigroup generated by —(I — F(p,)). Then

Sult)e = lim (I + 2(I = F(pa)) ™=

= lim (I + t’%i(l — F(pa)) %z = Sn(pat)z.

Using Lemma 1.2, we obtain "
|Sn(knpn) T Paz = F(pn)*" JA» Pazls
= |Su(ka)J 2" Pax = F(pa) 2 Pozly
< afrefnen=Di20 1) 4 k(o — 1) + kn}t/?
(I = F(pn))J /" Pagln
= afneknlon=D0p200 —1)? $ kp(an — 1) + kn} /200 |An JA™ Poz|n
= afneknlon=Dp200 12 4 kp(an = 1) + k)72

1
pn—|Ppz — J2* Poz|n.
r

Hence
|EnSn(knpn)Puz — EnF(pn)*» Pox|
< |EnSulknpn)Paz — EnSy(knpn)Ji'" Paz|
+ |EnSalknpn) I Paz — E F(pn)Fn JA» Poa|
+ |EnF(pn)t» JA Pz — B, F(pn)*n Ppa
< (K(n) + ~H(n)|Paz — I Pacln,
where

K(n) =Mz (exp(knpnwn) + ay®)
H(n) z.Mga,';'" exp(kn(an — Ik (ay — 1?2 4 kplogn - 1) + k,,}l/zpn.
By Lemma 2.4 in [4], we have
|Sn(knpn) 1 P — Sa(t)J A Paln
< Jknpn = || AnJ " Prfa(exp(2wn(t + knpn)) + exp(dwnt))
< Jknpn = tn(exp(2wa(t + knpa))

1
+ exp(4<_unt));|Pn:v — JA Poa|n.
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Hence

|EnSn(knpn)Pnz — E,S.(t)Pyz|

< |EuSu(knpn)Paz = EnSu(knpn)J " Poz|
H1EnSn(knpn )" Paz — EnSn(t)J A Pog|
+ |EnSa(t)J{" Poz — EqpSn(t)Poz)

1
< (L(1) + ~[knpn — H1M(n))|Paz - I3 Pazl.,
where

L(n) = M2(exp(knpnwn) + exp(wnt))
M(n) = Mz(eXp(an(t + knpn)) + exP(%nt))'

Note that
(a) If B, = o(pn), then limy oo knfBn = 0.

Proof of (a). Since knp, — ¢t and Bu/pa — 0 as n — oo,

knfBn = knpn& — as n — oo.

Pn

(b) im0 wp = w.

Proof of (b).
1 1
Wn =p_(an—l)=p_(wpn+o(pn))—>.d as 1 — 0.

(¢) limp—oo knpnwn = wt.
Proof of (c).

knpnwn = kn(an — 1) = ka(wpn + o(pn)) — wt as n — oo.

(d) limp_ o kn(an — 1) = limp—oo knpnwn = wt.
(€) imp_ oo akn = 2.
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Proof of (e). Since a*» = (14wpn+0(pn))* and limp—.o0 kn(wpn +
o(pn)) = wt,
lim of

Let 0 <t < T. By (d) and (e), there exist constants @1 and Q2
such that

,,:ewt

H(n) < Q1(Q: + kn)?pn

So we have H(n) < C; k}l/zpn for some constant C;. By (c) and (e),
there exists a constant C3 such that K(n) < C2. By (b) and (c¢), there
exist constants C3 and Cy such that

L(n) £ C5 and M(n) < C4.
Finally, for 0 <t < T,0 < a < 35 and z € D(4),

‘EnF(Pn)k" Pnz — S(t)z]
S |EnF(pn)k"an - Ensn(knpn)anl + IEnSn(knPn)Pn-T
— EnSu(t)Paz| + | EnSa(t)Paz — S(t)z]

\/_‘pn

(Cy + C)|Paz — J2% Paz|,

+(Cs + -—|knpn — #|C)|Pnz — J2 Poztln + |EnSn(t)Paz — S(t)z|
T
T Pre 1
+ \,/:P Ci + ;|knpn — t|C4)(2M17‘d(0, Al’)
+ |JAPoz — PoJ2z|,) + |EnSa(t) Puz — S(t)z)
r(2Cs M, (0 Ar)) +»(\/k pnCy + |knpn — t1C4)2M1d(0, Az)

+|Ens,, )P,l:n—S(t el,

IN

IA

where Cs = Cy + Cs.
Let € > 0 be given. Choose r > 0 such that

2% Cs M1d(0, Az) < g
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Since the other terms go to zero as n — oo for a fixed r > 0, the sum
of all other terms is less than  for all sufficiently large n. Hence

Jmlajughﬂﬁzsup for z € D(A),

and the convergence is uniform in ¢ € [0,T]. Let x € cl(D(A)), and let
€ > 0 be given. Then there exists y € D(A) such that

£

|$“yl<ma—,)>

where C > 2M; M, exp(wt) + 1 is a constant. Therefore

|EnF(pn)* Poz — S(t)z|
< |EnF(pn)* Paz — EnF(pa)*" Ppyl

+ |EnF(pn)*= Pay — S(t)yl + 1S(t)y — S(t)z|
< Myal» Mylz — y| + |EnF(pa)*" Pay — S(t)yl + €|z — y]
<(C+ ez — y| + |[EnF(pn)" Py — Sit)y| <&

for 0 <t < T and all sufficiently large n. This completes the proof.

We conclude this section by illustrating the applicability of Theorem
2.3 with the following example.

EXAMPLE 2.3. Let X = BUC(R), the space of all bounded uni-
formly continuous functions defined on the real line R with the usual
supremum norm. Let X,, P, and E, be given as in Example 2.1. Let
¢ : R — R be a Lipschitz continuous function with Lipschitz constant
w. Let A be an operator in X defined by

DA ={feX:f, f, f"eX} and Af = —f".
Define B : X — X by B(f)(z) = ¢(f(z)). Then A+ B +wl is
m-accretive. Let S be the semigroup generated by —(A4 + B).

Suppose now that {p,} is a sequence of positive numbers such that

1—2n2pn >0
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for each n. We define F(p,): X, — X, by

Flpn)({ur}iz o)
= {(1- 2n2pn)uk + n2pn(uk+1 +uk—1) + pad(ur)} Rz - o
Then F(p,) be a Lipschitz continuous function with Lipschitz constant

1+ ppw,
lim E,F(pn)*P,f = S(t)f

for all f € X and all sequences {k,} of positive integers such that
lim, .o knpn = t, and the convergence is uniform on bounded t-
intervals.

Proof. First we will show that F(p,) is a Lipschit continuous func-
tion with Lipschitz constant 1 + p,w. Let u, v € X,,. Then

|F(pn)u — F(pn)vln

sup{{(1 — 2n° pn )(us — vi) + n2pu(Urs1 — Ve + Up—1 — Vi_1)

+ pu(d(ur) — (i) 1 0, £1, £2,.--}

< sup{(1 — 20 py)|ur — ve| + n® o (furgs — viga] + lur—1 — vi-1])
+ pawlug —vx| 1 k=0, £1, £2,...}

<(1- 2n2pn)|u —vln + nzpn(|u = Vlp + u — v]n) -+ pnwlu — vy

= (14 pnw)lu = vln.

Hence F(p,) satisfies condition (1) of Theorem 2.3.

Since D(F(pn)) = Xn, condition (2) of Theorem 2.3 is also satisfied.
Next we will show that 4 + B 4+ wl is an m-accretive operator. It is
known that A ia an m-accretive operator in X. For f, g € X,

|Bf — Bg| = sup{|$(f(z)) — ¢(f(z))| : = € R} <w|f —g].

Thus B is a Lipschitz continuous everywhere defined function with
Lipschitz constant w, and so B + wI is an m-accretive. Since B + wl
1s continuous, everywhere defined and accretive, A + B +wI is also an
m-accretive operator in X (see [8]). By Lemma 1.1, ;]:(I—F(pﬂ Nt+wl

ia an m-accretive operator. Let A, = pl(I — F(pn)). To show that
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condition (3) of Theorem 2.3 is satisfied, we will use Lemma 3.3 in [11].
Let f € D(A). Then

Po(A+B)f = {~f"(xk) + ¢(f(20))}R2_
and

AnPaf = pin{f(rk) — (1= 202pa) f(2k) = 12 pn(f(zhs1)

— f(zk=1)) + pad(f(20))}R2 oo
={n*(—f(zr41) + 2f(2k) — Flzr-1)) + S(F(zx))}32 _ e

Thus

|AnPnf_Pn(A+B)f|

= sup{|n®(—f(zr+1) + 2f(z&) — flze-1)) + f'(z)] :
k=0, +1, +2.-..).

By the uniform continuity of [ and Lemma 2.1, we have
liminf E, A, P, D (A+ B).

By Lemma 3.3 in [11], we can conclude that
lim Eo(I+—(I = F(pa)) ' P.f = JAf,
n—aoo Pn

since B, JA» Py f = Eo(I474,) 7 Pof = Ex(I+-=(I1=F(pn))) "' Puf.

Therefore we can conclude, by Theorem 2.3, that
lim EnF(pn)*Puf = S(t)f

for all f € X and all sequences {k,} of positive integers such that
limy, o0 knpn = t, and the convergence is uniform on bounded t-
intervals.
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3. Resolvent convergence

In this section we will study the converse of Theorem 2.3. The con-
verse is not true in a general Banach space. But with some restrictions
on X and X,, we can show that convergence does imply resolvent
consistency for nonlinear algorithms. Thus our sufficient condition in
Section 2 turns out to be also necessary. To establish the converse, we
need a linear property of {P.} in the following sense: {P,} is asymp-
totically linear if

nlil}éo |Pn(a1' + /39) - (aPnf +ﬁpny)ln =

The asymptotic linearity of {P,} is equivalent to the asymptotic lin-
earity of {E,}. (See [11].)
To prove our result, we use Banach limits and the uniform continuity
of the duality mappings on bounded subsets of X,. Recall that a
Banach limit LIM is a bounded linear functional on [ of norm 1 such
that
lignioréf 2, <LIM {2,} <limsupz,

n—oo

and
LIM {z,} = LIM {241} forall {zx,}e€l*>.

By an argument similar to the one used in the proof of Lemma 1.3,
we can prove the following lemma.

LEMMA 3.1. Let {X}} be a sequence of uniformly convex dual Ba-
nach spaces with moduli of convexity é,(c). For each n let B, be a
bounded subset of X,, with M, = sup{|zaln : . € B,}. Suppose
that 8(¢) = inf{é,(¢) : n > 1} is positive and M = sup{M, : n > 1}
is finite. Then the duality mappings J, : X,, — X are uniformly
continuous on By, uniformly in n.

EXAMPLE 3.1. Let {X,} be a sequence of Hilbert spaces. Since it
is known that the modulus of convexity of §(¢) of a Hilbert space is
o(e) = 1——-(1—-‘2—2)1/2, it is clear that inf{é,(¢) : n > 1} = 1—(1—-54—2)1/2
is positive.
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EXAMPLE 3.2. Let X = L?([0, 1]),p > 2, and let X,, = R™ with
ful. = Az Y p_; |ukP. Suppose that §, is the modulus of convex-
ity of X and 4, is the modulus of convexity of X,,. Then 6(¢) =
inf{8,(¢), én(e): n > 1} is positive.

Proof. Tt is well known that §,(¢) = 1 — (1 — (£/2)?)"/P. Let u, v €
Xn,and let 0 < ¢ < 2. Then

[uk + vk P + Jug — vi [P < 227 (Jug|? + |oi]P) for each k.
So we obtain
lu+ v}, + Ju— o, <227 (Julh + [u]?).
If |uln <1, |v|n <1and |u—v|, >e¢, then
lu 4+ v]h < 2P — P,

So we have

bu(e) 21— (1= (55

Using the fact that J and J,, are uniformly continuous, uniformly
in n, on the bounded subsets of X and X,, respectively, we will show
that the convergence of algorithms implies resolvent consistency.

THEOREM 3.2. Let X* and X} be uniformly convex dual Banach
spaces with moduli of convexity éx(¢) and é,(¢), respectively. Let
A +wl be an accretive operator in X such that R(I +rA) D cl(D(4))
for r > 0 with rw < 1 and let S be the semi group generated by —A.
For each n, let C, be a closed convex subset of X, and let F(py)
be a mapping from C, into itself such that |Fipy)zn — F(pn)yn|n <
an|Tn — Ynln With ap =1+ wp, + o(pn).

Suppose that

(1) {Px} is asymptotically linear,

(2) 6(e) = min{éx(e), bn(e) : n > 1} is positive,

(3) cl(D(A)) is convex,

(4) Pn(cl(D(A))) C Cp for each n,

(5) pn — 0 asn — oo,

(6) limy—.co EnF(pn)f»Pox = S(t)z for ¢ € cl(D(A)) and any
integer sequence{k,} with k,p, — t > 0 as n — oo, and the
con vergence is uniform on bounded t-intervals.
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Then limp—oo En(I + 5=(I — F(pn)))) ™' Poz = JAzforallr >0w
ith rw < 1 and = € cl(D(A)).

Proof. For each T > 0 define a7, z) = sup{|E,.F(pn)*Pnz — z| :
0 < kpp, < T}. Then we claim that (T, z) — 0 as T — 0. If this is
not so, there exist ¢ > 0 and sequences {k, } and {p,,, } such that

kmpn,, — 0 and |Epn F(pn, )™ P,z — x| > ¢.

Since kn,, pr,, — 0,limn—co [En,, F(pn, )™ Py, — 2| = 0.
Let yn = (I +-=(1 - F(pn))) ' Paz for 0 < r < 1. We will show
that {|yn|n} is bounded. We have

anlyn — F(pn)* Paz|n
2 IF(Pn)yn - F(Pn)k+1p Z|n

=|(1+2n = )(n = Flpn) ' Poz) + ”(F(pn)k“ Pnz — Pyz)ln
> |yn —F(pn)"“P zln + -pflyn

— F(pn)**! Pozl, - ——|F( W) Poz — Pacls
> |yn — F(pn)* ! Poz|n + —Iyn — Puzln

2”" ZPn\F(pp)*H Paz — Przln.

Let {k,} be a sequence such that k,p, -t < T asn — co. For
0<k<k,—1,

|F(pn)* ! Paz — Prz|n < Mi|EoF(pn)** Poz — 2| < Mia(T, 2).
Hence we obtain

lyn — F(pa)* Paz|n
-1 Pn |

Yn — nl'!n

a7 yn = Fpn) ' Pazln + a

— _l 2Pn Mla(T -Z')
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and

a7 ¥ lyn — F(pn)* Paz|n
> a7 yn — F(pa)**' Pazln + a;"-l-‘;—"wn — Pzl

2pn
-a;k°l-—p—M1a(T, z).
T

Summing these inequlities from k = 0 to k = k, — 1, we have

Iyn - n-'l'ln
kn
> —k, F kn Pn 3
2 an "yn — F(pa) anln‘Jf"T—( Qay, )lyn_anin
k=1
2pn [
_ZPn (Z a;k)Mla(T, z)
T
k=1

> a7 (lyn — Pazln — |F(pn)*" Pz — Pyz|s)

kn kn
f_’_’}_ —k _ _ 2Pn —k
+ r (Zan )lyn nxln —T (Z O, )Mla(T, .’IJ)
k=1 k=1
Hence we have
k k
-1 2 n—1
(1_a£"+&'gﬁ_)|yn“Pn$|S (1+‘££‘an )Mla(T, ),
roa, —1 ap — 1
and
1 rw
I — Poz|n < (2 )M T, z).
lrrln_i‘ép‘yn nTln < 1 + s 1a(T, x)

Thus {|yn|n} is bounded.
Define

f:el(D(A)) » R by f(z)= LIM {ly» — Pazl3},

where LIM is a Banach limit, z € ¢/(D(A)) and {y, } is any subsequence
of {yn} which we continue to denote by {y.»}. Then f is continuous,
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convex and f(z) — oo as |z| — 0o. Since X is reflexive and cl(D(A4))
is convex, there exists u € c¢l(D(A)) such that

f(u) =inf{f(z): z € cl(D(A))}.

Our next step is to show that LIM{(Pnz — Ppu, yn — Pau)} < 0 for
z € cl(D(A)). For 0 < 7 < 1, we have

(Pnz — Pau, Jo(yn — Pau — n( Ppz — Pou)))
< 5 = Praft = Iy — Pt = n(Paz — Pa)2).
This implies that
LIM {(Pnz — Pau, Jn(yn = Pau — n(Paz — Pau)))}

< 2—1"(f(u) — F((1 = nu+72) <.

By the uniform continuity of J,, uniformly in n, for each € > 0 there
exists 7 such that

(Pnz — Ppu, Jo(yn — Ppu))
< (Pnz — Ppu, Ju(yn — Pau — eta(Ppz — Pyu))) + €.

Thus we have

LIM {(Paz — Patt, Ju(yn — Pat))}
< LIM{(Puz — Pau, Jn(yn — Pt — n(Pnz — Pau)))} +¢ <e.

Next we will show that f(u) = 0. Let z € ci(D(A)). Then

ailyn - F(Pn)kpnzﬁl
> |F(pn)yn — Fpn) T Ppz|?
= [vn ~ F(p)**" Pz + 22 (ya = Pua)}

2pn
2 |yn ~ F(Pn)kHPnzﬁz + %(yn — Poz, Jo(yn — F(Pn)k+lpnz))’
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and
@2 lyn — Fpn)* Pazl?
> a5 |y, — F(pp) 4 Pz’
+ 0;2(’”‘1).2_’.)2(%1 —Puz, Jo(yn — F(Pn)k+lpnz))'
r
Let {k.} be a sequence such that k,p, — t < T. Add these inequali
ties from k =0 to k =k, — 1. Then
lyn — Pz’
> ay lyn ~ F(pn)*n Pyz|?

2pn _
+ L Z nzk(yn - an, Jn(yn - F(pn)kPnz)).

k=1
Hence
2pn “ -2k k
e ’;an (yn — Ppz, In(yn — F(pn) nz))
< lyn = Pazly — a7 |yn — F(pa)* Pazf2.

Since [yn = PnS(t)z|n < lya—F(pn)* "Puzln+|F(pa)*n Poz— Py S(t)z]n,

k

200~ _

2 a7 (yn — Paz, Jalyn - Flpn)*n))
k=1

< |yn = Pazlh — a7y — F(pp)*»Py22
< lyn = Pazl} — a7 lyn — PaS(t)z[ + a2 M,
where
My = 2lyn — F(pn)*" Paz|n| F(pn)*" Pz — PaS(t)zla
+ |F(pn)n Prz — P,S(t)z]2.

We apply the above to u = z. By the uniform continuity of J,, uni-
formly in n, for each € > 0 there exist T > 0 ard ng such that

(Yn—Paz, Jn(yn—Pnu)) < a7 (yn— Paz, Jo(yn—F(pn)*" Pou)) +e,
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for all n > ng and 0 < ¢t < T. Hence

2kn n
ZEnln (y — Poz, Ju(yn — Pau))
P & 2knp
<) an™(yn — Paz, Jalyn = Flpn)" Pau)) + —¢
k=1

2k, "
< lyn — Paul? = a7 |y, — P.S(t)u| + an~ M, + —52 ZonfPn

Apply the Banach limit LIM to both sides. Then

2 LIM (g = Pa, (i — Pa))

< f(u) _ e-—2wtf(5(t)u) + .%T_g < (1 — e*ZWt)f(S(t)U«) + —2r—t€.

Hence LIM{(yn — Pnz, Ja(yn — Pru))} < 55(1 — e 2N f(S(t)u) +e.
Letting t — 0, we obtain

LIM{(yn — Pnz, Jn(yn — Pru))} < rwf(u) +¢.
Thus

LIM{(yn — Paz, Ju(yn — Pru))}
= f(u) + LIM{(Pru — Poz, Jo(yn — Pau))} <7 <mf(u) +¢

and
(1—rw)f(u) <e.

Now we can conclude that
f(u) = LIM{lyn — Pauln} = 0.
So there exists a subsequence {nx} such that

im |yn, — Pryttn, = 0.
n—+00

Let z, = (I + (I — S(s)))™'. Then lim, 2, = JAz = v (see
[14, 15]). Suppose that {ym} is a subsequence of {yn} such that
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limm oo Emym = u. We compl ete the proof by showing that u = JAz.
By the uniform continuity of J,, there exist so > 0, T > 0 and ng suc
h that for s < s9, t < T, and all n > n,

2 nkn
pr (yn— nl, Jn(yn—Pnzs))
k
2Pn - ——‘Zk k 2Pnkn
< — n"”Pn,n n"’F n n-Pns
< 5 2 0 e = Pazy Julyn = Flpn)* Paza)) + 2
20nkyn
< |yn"Pnzs!31— — lyn"F(Pn)k n< 3|2 P €
r
2 nkn
< lyn = Pazo|? — a2 yn — PaS(t)zef2 + a2 N, + ”T e,

where N = 2|yn — F(pn)*» Puze|n|F(pa)* " Pazsln + |F(pn )k Pz, —
P,S(t)z,]2.
Choose s =t < min(sg, T). Then

2
Pk~ Pa, Tu(yn ~ Paz0)

—2k, 2 -2k 2pnkn
< lyn — Paze) — a7 |y — PoS(t) 22 + a2 N, + €
< 'yn - nztln + Iyn - PnS(t)ztI?i

—2k 2 —2k 2pnkn
+(1‘—0(" ")lyn_PnS(t)Zt'n+an "N" +_T‘_6
t
S Iyn - Pnztﬁl - |yn - Pnzt + "'(Pnl' - -I)nz:t)l2 + On

+ (1= oy ¥y, — P,S(t)z]2 2pnk €

< -;—(Pnzt — Pox, Jo(yn — Paze)) + (1 - a;Ek")Iyn — P,S(t)z,)2
2 " n
O + N, 4 2nkn
”
where

t
On = 2lyn — Pulzi + ~(z = 20))|n
, t t
| Pz — ;(17 —21)) — (Pnzt — ‘(an = Puzt))ln

t
+|Pn(zt—;(x—2t)) Phze+ - (P:z-— nzt)li-
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Applying LIM to both sides, we obtain

2t
—LIM{(yn = Paz, Ja(yn — Pnz0))}

2t
-;—LIM{(Pnzt — Ppz, Jo(yn — Przt))}

IN

2t
+ (1 — e LIM{lyn — PaS(t)ze2} + =e.
r

Thus
LIM{(yn — Prz, Ju(yn — Pnz))}
< LIM{(Prnzt — Prz, Ju(yn — Pnz1))}
+ 57 (1 = e OLIM{lyn — PuS(@)zfi) +
and

LIM{Jyn — Pazif3} < (1 = e LIM{Jyn — PuS(t)z0l3) + <.
Letting ¢t — 0, we have
LIM{Jy, — Povla < rwLIM{|yn — Pav[2} +¢.
Therefore there exists a subsequence {m;} such that
klin;o{ymk — P, v|m, =0.

This implies that

lim |Enm, Ym, — v| =0.
k—s00
Thus u = v.

Combining Theorem 3.2 and Theorem 2.3, we have the following
corollary concerning the equivalence of convergence and resolvent con-
sistency.
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COROLLARY 3.3. Let X* and X} be uniformly convex Banach spa-
ces with moduli of convexity 6x(¢) and 6,(¢), respectively. Let A be
an accretive operator in X such that R(I + rA) D cl(D(A)) forr > 0
and let S be the semigroup generated by —A. For each n, let F(p,) be
a nonexpansive mapping from a closed convex subset of X, into itself.

Suppose that

(1) {Pn} is asymptotically linear,

(2) é(e) = min{éx(¢), én(c) : n > 1} is positive,
(3) cl(D(A)) is convex,

(4) Pp(cl(D(A))) C C, for each n,

(5) pn = 0 asn — oco.

Then the following are equivalent:

(a) limn oo En(I+ (I~ F(pn)))~ ' Paz = Jfz for all v > 0 and
z € cl(D(A)).

(b) lim, oo EnF(pn)** Pyx = S(t)z for z € cl(D(A)) and any
integer sequence {kn,} with lim,_.oc knpn = t > 0, and the
convergence Is uniform on bounded t- intervals.

REMARK. In the proof of Theorem 3.2 we used the uniform conti-
nuity of J, on the bounded subsets of X,,. But we need only assume
that the duali ty mappings are uniformly cortinuous from the strong
topology of X, to the weak-star topology of X*. Hence the uniform
convexity of X* and X can be repaced by the following weaker con-
dition. The duality mappings J : X — X* and J, : X, — X are
uniformly continuous from the strong topologies of X and X, to the
weak-star topologies of X* and X, respectively, uniformly in n in the
following sense:

For each € > 0, M and z € X there exists § > 0 which depends on
e, M and z such that

(Prz, Joun — Javp)| < ¢

for all jun — vnln < & with |us|, < M and [vninleqM.

In the one space case, that is, X = X,,, P, = E,, = I for all n, the
proofs of Theorem 3.2 and Corollary 3.3 yield the following new result
(cf. Corollary 2.2 in [14]).
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COROLLARY 3.4. Let X be a reflexive Banach space with a uni-

formly Gateaux differentiable norm. Let A be an accretive operator

in

X such that R(I + rA) O cl(D(A)) for r > 0 and let S be the

semigroup generated by —A. For each n let F(p,) be a nonexpansive
mapping from a closed convex subset of X into itself.

10.

Suppose that
(1) el(D(A)) is convex and cl(D(A)) C C.

(2) pn — 0asn — oo.
Then the following are equivalent:

(a) lim,_.co F(pp)*"z = S(t)z for z € cl(D(A)) and any integer
sequence {k,} with k,p, — t > 0 as n — oo, and the conver-
gence is uniform on bounded t-intervals.

(b) limnoo(I + =(I = F(pn))) "'z = J/'z for all > 0 and z €
cl(D(A)).
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