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Large Amplitude Oscillations in a Hanging Cable and
Suspension Bridge: Some New Connections with Nonlinear

Analysis
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Abstract

The motions of suspension bridge as well as hanging cable are governed by
nonlinear partial differential equations. Nonlinearity gives rise to a
large amplitude oscillation. We use finite difference methods to compute
periodic solutions to the torsional partial differential equations. We
use the one-noded forcing term and a slight perturbation in the forcing
term.
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1. Introduction

If the science of mechanics has a
classic movie, it might be the old film of
the collapse of the Tacoma Narrows
suspension bridge in 1940, Some people have
the bridge

large-scale

seen that the collapse of
followed the dramatic
oscillation.

For over sixty years, scientists have
attempted to explain the cause of the
destructive torsional
Tacoma  Narrows

dramatic and
oscillations of the
suspension bridge. We argue that nonlinear
partial differential equations govern the
motion of suspension bridges and that the
nonlinearity gives rise to a large
amplitude oscillation. Papers [2,4,5,6,7]
theoretical and
evidence for the vertical, torsional, and
traveling wave motion of suspension bridge.
considered a

provide a numerical

Earlier researcher
horizontal cross section of the center span
of a suspension bridge and ordinary
differential equation models for the
torsional and coupled torsional and coupled
torsional-vertical motions of the «cross
section.

We show partial differential equation
models for the torsional and coupled
vertical-torsional motions of the center
span in section 2. The forced sine-Gordon
equation on a bounded domain governs the
torsional motion.

We use finite difference methods to
compute periodic solutions to the torsional
partial differential equations. As in [5],
we demonstrate that under small external
forcing, the center span may oscillate

periodically with small or large amplitude,

depending only on its initial displacement
and velocity.

2. Description of the Model

We will treat the center span of the

bridge as a beam of length L and width 2/
suspended by cables. To model the motion of
a horizontal cross section of the beam, we

treat it as a rod of length 2/ and mass

m suspended by cables. Let y(£) denote
the downward distance of the center of
gravity of the rod from the unloaded state
and let o(d denote the angle of the rod

from horizontal at time f.

We will assume that the cables do not
resist compression, but resist extension
according to Hooke's law with spring
constant [, i.e., the force exerted by
the cable is proportional to the extension
in the cable with constant K. The
extension in the right hand cable is
(y—IsinB), and hence the force exerted
by the right hand cable is
—K(y— [ sin®) +  where
i.e.,

[O—K(y—lsine)

%™ mex{ 2,0}

y—Isin6=0
y—Isin©<(

Similarly, the extension in the left
hand cable is (y+/sin®) and the force
exerted by the left hand cable is
—K(y+ Isin®)*.

We have the same model as in [9].

8, —€B,, +60, =— 2.4cosfsind + \f(x,t)

8(0,t) =6(1,¢) =0

6(z,0) =¢(x),6,(2,0) =n(x)
e=6=0.01 and
external forcing of the form

Here, we choose
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Ax,8)=sin(ud)
Ax, &= sin(udsin (2nx)
or

Ax, )= sin(u#)sin(nx).
3. Numerical Results

The experiments I do here are the
continuation of [9]. This paper uses the
different external forcing from [9]. We
structure and observe the
solution and use the one-noded forcing with
different  and A. The solutions were
observed after periods 390 through 400 of
the forcing term in order to attempt to

avoid transient behaviors.
the physical

change nodal

To determine constants

K,m,I,L,8,6,¢e,¢e,, and the external
forcing terms A and Ax, ), we depend

on {11,(5], and [10]. We choose
L=1000,1 = 6,m = 2500,6, = 6, = 0.01, K= 1000,¢, = 0.01,

and €,=0.0001.

3.1 One-noded
conditions

forcing and initial

Experiment 1. In this experiment, we use

A=0.02,n=1.3. We apply forcing of the
form

A x, ) = Asinufsinnx

la. ©(x,0)=6(x, A)=1.2sinnx

Despite the large initial displacement,
we see in [Fig. 1] that the bridge has
settled down to no-noded, periodic
oscillation of small

(approximately 0.0248 radians).

amplitude

1b. O(x,0)=6(x, Af)=1.1sinmx

We decreased the amplitude of the
initial displacement only slightly
different from la, but we see in [Fig. 2]
that this small change has a dramatic
impact on the motion of the bridge. As in
la, the bridge has settled down to periodic
oscillation. But instead of settling to
near equilibrium behavior, as in la, the
ampl itude of the oscillation is
approximately 1.171 radians. This is close
to the amplitude observed at the Tacoma
Narrows suspension bridge on the day of the

collapse, [1].
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[Fig. 1] A Small
Amplitude Solution at p=1.3, A=(.02.
[29 1] 49 la: p=1.3, A=0.02 9
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Experiment la:

[Fig. 2] Experiment 1b: A Large
Amplitude Periodic Solution at
u=1.3,A=0.02.

(29 2] 4F b p=1.3 A=0.02 °
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3.2 Solutions
structure

which change nodal

which
preceded the collapse of the Tacoma Narrows

The torsional oscillations

suspension bridge were one—noded.
Occasionally, the motion would change to be
no-noded and then back to be one—noded. In

this experiment, we use forcing of the form

M x, ) = Asinnf sin (2nx) +0.01 sin(nx)]

Experiment 2. We use A=0.06,u=1.4.

We use the following large initial

displacement .
O(x,)=6(x,A) =1.4sin2nx

We see a complicated motion in [Fig.
3]. The parameters are the same as those of
[91. Different forcing term and
displacement give the different result from
fol.

[Fig. 4] shows the angular displacement
along the length of the bridge at two
different points in time; the solid curve
describes a one-noded twist while the
dashed curve has no node.
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[Fig. 3] Experiment 2a: A Small
Amplitude Solution at p=1_4, A=0.06-
(2% 3] 49 20 p=1.4, A=0.06 °
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4. Conclusion

All numerical results above were only
approximately solved by a finite difference
method. From the various numerical
experiments, there are rich phenomena
associated with the oscillation of the
Tacoma Narrows suspension bridge and
hanging cable.

In this paper, we noticed the following

mathematical phenomena.

1. The suspension bridge and hanging cable
have the large scale oscillation.

2. The suspension bridge and cable would go
into large oscillation under the impulse of
a single gust, and at other times would
remain motionless.

3. The motions would change rapidly from
one nodal type to another.

4. The large vertical oscillation could
rapidly change to torsional.

Later, this research has to be
investigated for higher frequency forcing.
Further investigation will include the
result for the coupled vertical-torsional
motion of the main span of a suspension
bridge.
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[Fig. 4] Expefimeht 2: The angular
displacement at p=].4, A=0.06-

[29 4] 28 2> p=1.4, A=0.06 °
A w9
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