• Title/Summary/Keyword: p10 유전자

Search Result 1,624, Processing Time 0.028 seconds

Comparison of Methods for Stable Simultaneous Expression of Various Heterologous Genes in Saccharomyces cerevisiae (출아효모에서 다양한 이종 유전자의 안정적 동시발현을 위한 방법의 비교)

  • Jung, Heo-Myung;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.667-672
    • /
    • 2019
  • We compared two integration systems for stable expression of heterologous genes in Saccharomyces cerevisiae. A Candida glabrata-derived gene was used as the selective marker for the Cre/loxP system, and XYLP, XYLB, GRE3, and XYL2 genes were used as model heterologous genes and ligated into the universal pRS-CMT vector. The resulting pRS-XylP, pRS-XylB, pRS-Gre3, and pRS-Xyl2 plasmids were sequentially integrated into yeast chromosome VII by four integration processes (marker rescue and gene integration). The four introduced genes were successfully expressed. Further, the pRS-PBG2 plasmid harboring expression cassettes for the four genes was constructed for one-step integration. The four genes that were introduced were stably maintained as a gene cluster and were simultaneously expressed. The one-step integration was more effective for the simultaneous integration and expression of the four genes related to xylan/xylose metabolism. This method will enable the generation of a useful biosystem through appropriate use of gene integration methods.

GENE EXPRESSION OF HUMAN CORONARY ARTERY ENDOTHELIAL CELLS IN RESPONSE TO PORPHYROMONAS ENDODONTALIS INVASION (Porphyromonas endodontalis의 침투에 따른 혈관 내피세포의 유전자 발현)

  • Kong, Hee-Joung;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Lee, Jin-Yong;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.537-550
    • /
    • 2009
  • During the last two decades, there has been an increasing interest in the impact of oral health on atherosclerosis and subsequent cardiovascular disease (CVD). To date, some periodontal pathogens including Porphyromonas gingivalis (P. gingivalis) have been reported to be relevant to CVD. Porphyromonas endodontalis (P. endodontalis), which shares approximately 87% sequence homology with P. gingivalis, is mostly found within infected root canals. However, recent studies reveal that this pathogen also resides in the dental plaque or periodontal pocket in patients with periodontitis. It has been shown that P. endodontalis invades human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC). To evaluate whether P. endodontalis can participate in the progression of atherosclerosis and CVD, we examined the changes in transcriptional gene expression profiles of HCAEC responding to invaion by P. endodontalis in this study. The following results were obtained. 1. Porphyromonas endodontalis was invasive of HCAEC. 2. According to the microarray analysis, there were 625 genes upregulated more than two-folds, while there were 154 genes downregulated by half. 3. Upregulated genes were relevant to inflammatory cytokines, apoptosis, coagulation and immune response. Enhanced expression of MMP-1 was also noticeable. 4. The transcription profiles of the 10 selected genes examined by real-time PCR agreed well with those observed in the microarray analysis. Thus, these results show that P. endodontalis presents the potential to trigger and augment atherosclerosis leading to CVD.

Nucleotide Sequence Analyses of p10 Gene and its Promoter of Hyphantria cunea Nuclear Polyhedrosis Virus (Hyphantria cunea Nuclear Polyhedrosis Virus p10유전자와 프로모터의 염기서열 결정)

  • Park, Sun-A;Cha, Sung-Chul;Chang, Jae-Hyeok;Lee, Hyung-Hoan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.131-137
    • /
    • 1996
  • The sequences of p10 gene its promoter of Hyphantria cunea NPV were determined. According to the sequence analysis, the putative p10 gene ORF has 285 bp. The 5'-non-coding leader sequence of the p10 gene promoter contained the TATA box and the putative transcription initiation site TAAG motif. Poly (A) tail signals, AATAAA sequence was at site 65 base upstream from the 3' terminus. The deduced amino acid sequence of p10 protein was 95 with a predicted molecular weight of 10.26 kDa. In the p10 protein sequence, a hydrophobic region was present at the N-terminus of the protein, whereas the C-terminus was highly hydrophilic. The p10 protein of H. cunea NPV did not contain cysteine, histidine, trytophan, tryptophane, tyrosine, glutamine and asparagine residues.

  • PDF

Biogenetical study on potential regulatory factors involved in expression of region III genes of Escherichia coli K99 adhesion gene cluster (대장균 K99섬모 유전자군중 제 3지역 발현에 관련된 조절자의 유전학적 연구)

  • Lee, John-Hwa;Baek, Byeong-Kirl;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.4
    • /
    • pp.505-512
    • /
    • 2002
  • 대장균 K99 섬모의 생합성은 8개로 구성된 K99의 특이 유전자의 발현과 숙주유래 인자에 의해 조절되는 다른 유전자들의 발현에 의존된다. 본 연구에서는 K99섬모 유전자군중 제 3지역 발현에 유전조절자의 관련성 여부를 연구하였다. Gel retardation 분석 방법올 통하여 제3지역의 발현에 관련된 유전조절단위를 함유한 fanF 지역의 단백질 인자가 부착됨을 암시하였다. 이 분석방법을 이용한 결과는 또한 이 단백질 인자가 K99 유전자에서 유래되지 않고 대장균 염색체에서 유래됨을 지적하였다. 이를 보다 더 조사하기 위하여 대장균 염색체에 Tn10 transposon 유전자 변이 실험을 수행하였다. K99 유전자군으로부터 제 1지역과 제2지역의 유전자를 제거시키고, 제 3지역의 유전자인 fanG에 transposon TnlacZ를 삽입한 pTL65-1 plasmid을 제작하였다. 이 pTL65-1는 다시 Tn10으로 염색체가 변이된 대장균에 주입하였다. 3개의 pTL65-1 주입된 Tn10 대장균 변이체 내에서 fanG의 발현이 증가되었다. 이들 변이대장균으로부터 Tn10이 어떤 염색체 유전자 부위를 변이 시켰는지 확인하기 위해서 변이부위 유전자를 cloning하여 염기서열을 분석하였다. 이중 2개의 clone이 동일하였으며 지금까지 알려지지 않은 유전자였다. 이들 2개의 변이체 내에서 fanG의 발현은 대조군과 비교해 약 4.2배 증가 되였다. 결론적으로 이들 2개의 clone으로부터 유래된 인자는 지금까지 알려지지 않은 제 3지역의 억제 조절자임을 나타내었다.

High Level Expression of XMP Aminase Gene in Esherichia coli (Esherichia coli XMP Aminase 유전자의 발현 증대)

  • 조정일;한철주
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.3
    • /
    • pp.133-137
    • /
    • 1991
  • In order to increase the expression of XMP aminase [EC 6.3.4.1], which catalizes the conversion of 5'-XMP to the DNA fragment containing gua A gene coding for XMP aminase from pLC 34-10 plasmid was subcloned into pBR 322, and 1.7 kb gua A gene fragment was recloned under the control of trp promoter of pDR 720, E. coli expression vector. XMP aminase activity had increased by about 17 times when compared with that of the strain earring pLC 34-10.

  • PDF

Location and Nucleotide Sequence of the Bombyx mori Nuclear Polyhedrosis Virus Polyhedrin Gene (누에 핵다각체병 바이러스의 다각체 단백질 유전자의 위치 탐색 및 염기서열)

  • 우수동;김현욱;박범석;강석권;양재명;정인식
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.2
    • /
    • pp.20-25
    • /
    • 1992
  • The location of the polyhedrin gene of Bmbyx mori nuclear polyhedrosis virus(BmNPV) was determined by using a cloned polyhedrin gene from the Autographa californica nuclear polyhedrosis virus(AcNPV) as a hybridization probe. The 7.4 Kb PstⅠ fragment DNA of Bm-NPV was cloned to plasmid pUC19 vector. A fragment containing this gene was mapped and sequenced in its entire polyhedrin reading frame. Nucleotide sequences comparison of the polyhedrin of the BmNPV to that of previously reported by Ⅰatrou(1985) revealed that the sequence varied in 10 base, Comparison of the amino acid sequence of the two structured gene revealed that coding sequence varied 74 valine to isoleucine, 76 aspargine to serine and 155 methionine to valine.

  • PDF

Structure Analysis of pmcABCDEFT Gene Cluster for Degradation of Protocatechuate from Comamonas sp. Strain DJ-12 (Comamonas sp. Strain DJ-12로부터 Protocatechuate의 분해에 관여하는 pmcABCDEFT 유전자군의 구조 분석)

  • Kang Cheol-Hee;Lee Sang-Mhan;Lee Kyoung;Lee Dong-Hun;Kim Chi-Kyung
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2005
  • Comamonas sp. strain DJ-12 is a bacterial isolate capable of degrading of 4-chlorobiphenyl (4CB) as a carbon and energy source. The degradation pathway was characterized as being conducted by consecutive reactions of the meta-degradation of 4CB, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-degradation of protocatechuate to product TCA metabolites. The 6.8 kb fragment from the chromosomal DNA of Comamonas sp. strain DJ-12 included the genes encoding for the meta-degradation of PCA; the genes of protocatechuate 4,5-dioxygenase alpha and beta subunits (pmcA and pmcB), 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (pmcC), 2-pyrone-4,6-dicarboxylate hydrolase (pmcD), 4-oxalomesaconate (OMA) hydratase(pmcE), 4-oxalocitramalate (OCM) aldolase (pmcF), and transporter gene (pmcT). They were organized in the order of pmcT-pmcE-pmcF-pmcD-pmcA-pmcB-pmcC. The amino acid sequences deduced from the nucleotide sequences of pmcABCDEFT genes from Comamonas sp. strain DJ-12 exhibited 94 to $98\%$ homologies with those of Comamonas testosteroni BR6020 and Pseudomonas ochraceae NGJ1, but only 52 to $74\%$ with homologies Sphingomonas paucimobilis SYK-6, Sphingomonas sp. LB126, and Arthrobacter keyseri 12B.

Construction and Verification of Useful Vectors for Ectopic Expression and Suppression of Plant Genes. (식물 유전자의 과발현 및 발현 억제를 위한 유용 벡터의 제조 및 확인)

  • Lee, Young-Mi;Seok, Hye-Yeon;Park, Hee-Yeon;Park, Ji-Im;Han, Ji-Sung;Bang, Tae-Sik;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2009
  • The phenotypes associated with a gene function are often the best clue to its role in the plant. Transgenic plants ectopically expressing or suppressing a gene can provide useful information related to the gene function. In this study, we constructed three vectors - pFGL571, pFGL846 and pFGL847 - for the Agrobacterium-mediated ectopic expression of plant genes using pPZP211 and modified CaMV 35S, UBQ3 or UBQ10 promoters. The three vectors have several merits such as small size, high copy in bacteria, enough restriction enzyme sites in multi cloning sites and nucleotide sequence information. Analysis of transgenic plants containing GUS or sGFP reporter genes under the control of modified CaMV 35S, UBQ3 or UBQI0 promoter revealed that all of the three promoters showed high activities during most developmental stages after germination and in floral organs. Furthermore, we generated a RNAi module vector, pFGL727, to suppress plant gene expressions and confirmed that pFGL727 is useful for the suppression of a gene expression using rice transgenic plants. Taken together, our new vectors would be very useful for the ectopic expression or the suppression of plant genes.

Characterizations of the Antimicrobial Resistant Determinants in Proteus spp. Isolated from Humans and Chickens in the Chungcheong Province (충청지역의 사람과 닭으로부터 분리된 Proteus속에 속하는 균주에 존재하는 항균제 내성유전자의 유전형 분석)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.327-334
    • /
    • 2016
  • Recently, antimicrobial resistance of pathogenic bacteria has been increasing due to excessive use of antimicrobial agents in both humans and livestock. PCR amplification and nucleotide sequence analyses were conducted to investigate16S ribosomal RNA methyltransferase (RMTase) genes and integrons in P. mirabilis strains isolated from clinical specimens and chickens in an area of the Chungcheong providence. In addition, clonality analysis of P. mirabilis strains was performed using a repetitive extragenic palindromic sequence-based PCR (REP-PCR) method. Of the total 38 P. mirabilis isolates, 7 (18.4%) strains were isolated from clinical specimens contained in the RMTase genes and showed resistance to amikacin, tobramycin, and gentamicin. A total of 23 (60.5%) isolates carried class 1 integrons, but no isolates in our study harbored class 2 and class 3 integrons. Class 1 integrons detected in our study harbored genes encoding resistance to aminoglycosides (aadA2, aadA5, aadA7, and aacCA5), ${\beta}$-lactams ($bla_{PSE}$), erythromycin (ereA), lincosamides (linF), and trimethoprim (dfrA12, dfrA17, and dfrA32). We confirmed that the RMTase genes had spread among only the P. mirabilis isolates from clinical specimens, but class 1 integrons had widely disseminated among P. mirabilis isolates from clinical specimens and chickens. In addition, identical REP-PCR banding patterns were evidenced in only P. mirabilis isolates from chickens. Our results suggest the horizontal spreading of P. mirabilis isolates in the chicken farm. To prevent further spreading of antimicrobial resistant genes among P. mirabilis isolates, monitoring and clinical policing will be required.

Correlation of Gene Expression between Adiponectin and Glucose Transporter 4 in Mouse Adipose Tissue (생쥐 지방조직에서의 아디포넥틴과 포도당수송체-4 유전자 발현의 상관관계)

  • Lee, Yong-Ho
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.895-902
    • /
    • 2014
  • Adiponectin has been known to improve insulin sensitivity and elicit glucose uptake via increased glucose transporter 4 (GLUT4) translocation. In the current study, mRNA expression levels of adiponectin and GLUT4 were measured in subcutaneous adipose tissue from C57BL/6 mice fed normal (ND) or high-fat diet (HFD) until 16, 26, 36, 47, or 77 weeks of age starting from 6 weeks of age. Expression levels were also measured in mice with calorie restriction (CR) and in thiazolidinedione (TZD) treated mice. Using quantitative real-time PCR, we demonstrated that GLUT4 expression in adipose tissue significantly decreased in HFD mice groups and increased in CR (p<0.05) and TZD (p=0.007) groups while there was no difference in adiponectin mRNA expression levels between experimental and control groups. General linear regression models were used to assess the association of gene expression levels between adiponectin and GLUT4 and to determine whether adiponectin affects GLUT4 transcription. mRNA expression levels of adiponectin and GLUT4 are significantly associated each other in mice fed a ND (p<0.0001) or HFD (p<0.0001), in groups separated into each age and diet, and CR group (p=0.002), but not in TZD group (p=0.73). These results demonstrated that gene expression of adiponectin and GLUT4 is strongly associated, suggesting that there is a common regulatory mechanism for adiponectin and GLUT4 gene expression and/or adiponectin has a direct role in GLUT4 gene expression in adipose tissue.