DOI QR코드

DOI QR Code

Comparison of Methods for Stable Simultaneous Expression of Various Heterologous Genes in Saccharomyces cerevisiae

출아효모에서 다양한 이종 유전자의 안정적 동시발현을 위한 방법의 비교

  • Jung, Heo-Myung (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University) ;
  • Kim, Yeon-Hee (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University)
  • 정회명 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 김연희 (동의대학교 바이오응용공학부 의생명공학전공)
  • Received : 2019.07.09
  • Accepted : 2019.09.26
  • Published : 2019.12.28

Abstract

We compared two integration systems for stable expression of heterologous genes in Saccharomyces cerevisiae. A Candida glabrata-derived gene was used as the selective marker for the Cre/loxP system, and XYLP, XYLB, GRE3, and XYL2 genes were used as model heterologous genes and ligated into the universal pRS-CMT vector. The resulting pRS-XylP, pRS-XylB, pRS-Gre3, and pRS-Xyl2 plasmids were sequentially integrated into yeast chromosome VII by four integration processes (marker rescue and gene integration). The four introduced genes were successfully expressed. Further, the pRS-PBG2 plasmid harboring expression cassettes for the four genes was constructed for one-step integration. The four genes that were introduced were stably maintained as a gene cluster and were simultaneously expressed. The one-step integration was more effective for the simultaneous integration and expression of the four genes related to xylan/xylose metabolism. This method will enable the generation of a useful biosystem through appropriate use of gene integration methods.

본 연구는 출아효모 Saccharomyces cerevisiae을 이용해 이종 유전자(heterologous gene)를 효모염색체내에 도입하여 안정적으로 발현하기 위한 시스템의 비교에 대해서 연구하였다. 반복적으로 사용할 수 있는 Cre/loxP system의 이용을 위해 C. glabrata 유래 유전자를 선택마커로 사용하였고, universal pRS-CMT vector를 이용한 4종의 유전자(XYLP, XYLB, GRE3 및 XYL2 유전자)를 모델 유전자로 cloning하였다. 구축된 pRS-XylP, pRS-XylB, pRS-Gre3 및 pRS-Xyl2 plasmid를 이용한 4번의 sequential integration을 통해 효모염색체내에 도입된 4종의 유전자를 순차적으로 발현시킬 수 있었다. 또한 4종의 유전자 발현 cassette를 동시에 가지는 pRS-PBG2 plasmid에 의한 one-step integration을 통해서, 도입될 유전자들의 순서를 정할 수 있었으며 각 유전자들의 동시발현을 안정적으로 유지할 수 있었다. 결론적으로 본 연구에서 사용한 4종의 유전자들의 염색체내 동시 integration 및 발현을 위해서는 one-step integration이 효과적임을 확인하였으며, 적절한 유전자 도입방법을 통해 산업적으로 유용한 생물시스템의 손쉬운 육종이 가능하리라 기대한다.

Keywords

References

  1. Murray AW, Szostak JW. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34: 961-970. https://doi.org/10.1016/0092-8674(83)90553-6
  2. Romanos MA, Scorer CA, Clare JJ. 1992. Foreign gene expression in yeast: a review. Yeast 8: 423-488. https://doi.org/10.1002/yea.320080602
  3. Lee FW, Da Silva NA. 1997. Sequential delta-integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol. Prog. 13: 368-373. https://doi.org/10.1021/bp970055d
  4. Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24: 2519-2524. https://doi.org/10.1093/nar/24.13.2519
  5. Kim YH, Sugiyama M, Yamagishi K, Kaneko Y, Fukui K, Kobayashi A, et al. 2005. A versatile and general splitting technology for generating targeted YAC subclones. Appl. Microbiol. Biotechnol. 69: 65-70. https://doi.org/10.1007/s00253-005-1970-x
  6. Jung HM, Kim YH. 2018. Simultaneous overexpression of integrated genes by copy number amplification of a mini-yeast artificial chromosome. J. Microbiol. Biotechnol. 28: 821-825. https://doi.org/10.4014/jmb.1711.11061
  7. Choi HJ, Kim YH. 2018. Simultaneous and sequential integration by Cre/loxP site-specific recombination in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 826-830. https://doi.org/10.4014/jmb.1802.02004
  8. Sugiyama M, Ikushima S, Nakazawa T, Kaneko Y, Harashima S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. BioTechniques 38: 909-914. https://doi.org/10.2144/05386RR01
  9. Jo JH, Oh SY, Lee HS, Park YC, Seo JH. 2015. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol. J. 10: 1935- 1943. https://doi.org/10.1002/biot.201500068
  10. Kim YH, Nam SW. 2010. Development of simultaneous YAC manipulation-amplification (SYMA) system by chromosome splitting technique harboring copy number amplification system. J. Life Sci. 20: 789-793. https://doi.org/10.5352/JLS.2010.20.5.789
  11. Chun YC, Jung KH, Lee JC, Park SH, Chung HK, Yoon KH. 1998. Molecular cloning and the nucleotide sequence of a Bacillus sp. KK-1 ${\beta}$-xylosidase gene. J. Microbiol. Biotechnol. 8: 28-33.
  12. Lee LH, Kim DY, Han MK, Oh HW, Ham SJ, Park DS, et al. 2009. Characterization of an extracellular xylanase from Bacillus sp. HY-20, a bacterium in the gut of Apis mellifera. Korean J. Microbiol. 45: 332-338.
  13. Kim SR, Kwee NR, Kim B, Jin YS. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulose kinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 13: 312-321. https://doi.org/10.1111/1567-1364.12036
  14. Kim MJ, Kim BH, Nam SW, Choi ES, Shin DH, Cho HY, et al. 2013. Efficient secretory expression of recombinant endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae, J. Life Sci. 23: 863-868. https://doi.org/10.5352/JLS.2013.23.7.863