Browse > Article

Structure Analysis of pmcABCDEFT Gene Cluster for Degradation of Protocatechuate from Comamonas sp. Strain DJ-12  

Kang Cheol-Hee (Department of Microbiology. Chongbuk National University)
Lee Sang-Mhan (Department of Life Science, Cheongju University)
Lee Kyoung (Department of Microbiology. Changwon National University)
Lee Dong-Hun (Department of Microbiology. Chongbuk National University)
Kim Chi-Kyung (Department of Microbiology. Chongbuk National University)
Publication Information
Korean Journal of Microbiology / v.41, no.3, 2005 , pp. 195-200 More about this Journal
Abstract
Comamonas sp. strain DJ-12 is a bacterial isolate capable of degrading of 4-chlorobiphenyl (4CB) as a carbon and energy source. The degradation pathway was characterized as being conducted by consecutive reactions of the meta-degradation of 4CB, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-degradation of protocatechuate to product TCA metabolites. The 6.8 kb fragment from the chromosomal DNA of Comamonas sp. strain DJ-12 included the genes encoding for the meta-degradation of PCA; the genes of protocatechuate 4,5-dioxygenase alpha and beta subunits (pmcA and pmcB), 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (pmcC), 2-pyrone-4,6-dicarboxylate hydrolase (pmcD), 4-oxalomesaconate (OMA) hydratase(pmcE), 4-oxalocitramalate (OCM) aldolase (pmcF), and transporter gene (pmcT). They were organized in the order of pmcT-pmcE-pmcF-pmcD-pmcA-pmcB-pmcC. The amino acid sequences deduced from the nucleotide sequences of pmcABCDEFT genes from Comamonas sp. strain DJ-12 exhibited 94 to $98\%$ homologies with those of Comamonas testosteroni BR6020 and Pseudomonas ochraceae NGJ1, but only 52 to $74\%$ with homologies Sphingomonas paucimobilis SYK-6, Sphingomonas sp. LB126, and Arthrobacter keyseri 12B.
Keywords
Comamonas sp. DJ-12; genetic structure; pmcABCDEFT; protocatechutate(PCA) degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chae, J.C., Y. Kim, Y.C. Kim, G.J. Zylstra, and C.K. Kim. 2000. Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12. Gene 258, 109-116   DOI   PUBMED   ScienceOn
2 Kim, J.W., C.K. Kim, Y.C. Kim, J.H. Yeoum, and J.G. Lee. 1987. Isolation and characterization of bacteria degrading chlorinated aromatic hydrocarbons. J. Microbiol. 25, 122-128
3 Lee, J.H., D.W. Park, C.H. Kang, J.C. Chae, D.H. Lee, and C.K. Kim. 2004. Reidentification of Comamonas sp. strain DJ-12 and analysis of its pcbABC2D2 genes responsible for degradation of 4-chlorobiphenyl. Kor. J. Microbiol. 40, 121-126
4 Locher, H.H., T. Leisinger, and A.M. Cook. 1991. 4-sulphobenzoate 3,4-dioxygenase: purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. J. Biochem. 274, 833-842   DOI
5 Masai, E., K. Momose, H. Hara, S. Nishikawa, Y. Katayama, and M. Fukuda. 2000. Genetic and biochemical characterization of 4-carboxy-2-hydroxy-muconate-6-semialdehyde dehydrogenase and its role in the protocatechuate 4,5-cleavage pathway in Sphingomonas paucimobilis SYK-6. J. Bacteriol. 182, 6651-6658   DOI   ScienceOn
6 Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular coling, A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
7 Yun, S.H., C.Y. Yun, and S.I. Kim. 2004. Characterization of protocatechuate 4,5-dioxygenase induced from p-hydroxybenzoate-cultured Pseudomonas sp. K82. J. Microbiol. 42, 152-155
8 Providenti, M.A., J. Mampel, S. MacSween, A.M. Cook, and R.C. Wyndham. 2001. Comamonas testosteroni BR6020 possesses a single genetic locus for extradiol cleavage of protocatechuate. Microbiology 147, 2157-2167   DOI   PUBMED
9 Arciero, D.M., A.M. Orville, and J.D. Lipscomb. 1990. Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni. Methods Enzymol. 188, 89-95   DOI   PUBMED
10 Katayama, Y., S. Nishikawa, M. Nakamura, K. Yano, M. Yamasaki, N. Morohoshi, and T. Haraguchi. 1987. Cloning and expression of Pseudomonas paucimobilis SYK-6 genes involved in the degradation of vanillate and protocatechuate in P. putida. Mokuzai Gakkaisi 33, 77-79
11 Maruyama, K., T. Shibayama, A. Ichikawa, Y. Sakou, S. Yamada, and H. Sugisaki. 2004. Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci. Biotechnol. Biochem. 68, 1434-1441   DOI   ScienceOn
12 Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680   DOI   ScienceOn
13 Karegoudar, T.B., J.C. Chae, and C.K. Kim. 1999. Catabolism of 4-hydroxy benzoic acid by Pseudomonas sp. DJ-12. J. Microbiol. 37, 123-127
14 Schlfli, H.R., M.A. Weiss, T, Leisinger, and A.M. Cook. 1994. Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J. Bacteriol. 176, 6644-6652   DOI   PUBMED
15 Goyal, A.K. and G.J. Zylstra. 1996. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol. 62, 230-236   PUBMED
16 Chae, J.C., E.H. Kim, S.H. Park, and C.K. Kim. 2000. Catabolic degradation of 4-chlorobiphenyl by Pseudomonas sp. DJ-12 via consecutive reaction of meta-cleavage and hydrolytic dechlorination. Biotechnol. Bioprocess Eng. 5, 449-455   DOI   ScienceOn
17 Locher, H.H., C. Malli, S. Hooper, T. Vorherr, T. Leisinger, and A. M. Cook. 1991. Degradation of p-toluic acid (p-toluenecarboxylic acid) and p-toluenesulphonic acid via oxygenation of the methyl sidechain is initiated by the same set of enzymes in Comamonas testosteroni T-2. J. Gen. Microbiol. 137, 220-228
18 Maruyama, K. 1990. Purification and properties of 4-hydroxy-4-methyl- 2-oxoglutarate aldolase from Pseudomonas ochraceaegrown on phthalate. J. Biochem. 108, 327-333   DOI   PUBMED
19 Noda, Y., S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. 1990. Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J. Bacteriol. 172, 2704-2709   DOI   PUBMED
20 Wolgel, S.A., J.E. Dege, P.E. Perkins-Olson, C.H. Jaurez-Garcia, R.L. Crawford, E. Munck, and J.D. Lipscomb. 1993. Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J. Bacteriol. 175, 4414-4426   DOI   PUBMED
21 Wattiau, P., L. Bastiaens, R. van Herwijnen, L. Dal, J. R. Parsons, M.E. Renard, D. Springael, and G.R. Cornelis. 2001. Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res. Microbiol. 152, 861-872   DOI   ScienceOn
22 Alison, B., L.S. Collier, E.L. Neidle, and M.A. Moran. 2000. Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl. Environ. Microbiol. 66, 4662-4672   DOI   ScienceOn
23 Masai, E., S. Shinohara, H. Hara, S. Nishikawa, Y. Katayama, and M. Fukuda. 1999. Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J. Bacteriol. 181, 55-62   PUBMED
24 Eaton, R.W. 2001. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J. Bacteriol. 183, 3689-3703   DOI   PUBMED   ScienceOn
25 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 4876-4882