Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.6.809

Construction and Verification of Useful Vectors for Ectopic Expression and Suppression of Plant Genes.  

Lee, Young-Mi (Department of Molecular Biology, Pusan National University)
Seok, Hye-Yeon (Department of Molecular Biology, Pusan National University)
Park, Hee-Yeon (Department of Molecular Biology, Pusan National University)
Park, Ji-Im (Department of Molecular Biology, Pusan National University)
Han, Ji-Sung (Department of Molecular Biology, Pusan National University)
Bang, Tae-Sik (Department of Molecular Biology, Pusan National University)
Moon, Yong-Hwan (Department of Molecular Biology, Pusan National University)
Publication Information
Journal of Life Science / v.19, no.6, 2009 , pp. 809-817 More about this Journal
Abstract
The phenotypes associated with a gene function are often the best clue to its role in the plant. Transgenic plants ectopically expressing or suppressing a gene can provide useful information related to the gene function. In this study, we constructed three vectors - pFGL571, pFGL846 and pFGL847 - for the Agrobacterium-mediated ectopic expression of plant genes using pPZP211 and modified CaMV 35S, UBQ3 or UBQ10 promoters. The three vectors have several merits such as small size, high copy in bacteria, enough restriction enzyme sites in multi cloning sites and nucleotide sequence information. Analysis of transgenic plants containing GUS or sGFP reporter genes under the control of modified CaMV 35S, UBQ3 or UBQI0 promoter revealed that all of the three promoters showed high activities during most developmental stages after germination and in floral organs. Furthermore, we generated a RNAi module vector, pFGL727, to suppress plant gene expressions and confirmed that pFGL727 is useful for the suppression of a gene expression using rice transgenic plants. Taken together, our new vectors would be very useful for the ectopic expression or the suppression of plant genes.
Keywords
Plant; ectopic expression; suppression; promoters; RNAi;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smith, N. A., S. P. Singh, M. B. Wang, P. A. Stoutjesdijk, A. G. Green, and P. M. Waterhouse. 2000. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319-320   DOI   ScienceOn
2 Stoutjesdijk, P. A., S. P. Singh, Q. Liu, C. J. Hurlstone, P. A. Waterhouse, and A. G. Green. 2002. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol. 129, 1723-1731   DOI   ScienceOn
3 Sun, C. W. and J. Callis. 1997. Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J. 11, 1017-1027   DOI   ScienceOn
4 Wally, O., J. Jayaraj, and Z. K. Punja. 2008. Comparative expression of beta-glucuronidase with five different promoters in transgenic carrot (Daucus carota L.) root and leaf tissues. Plant Cell Rep. 27, 279-287   DOI   ScienceOn
5 Wang, J. and J. H. Oard. 2003. Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep. 22, 129-134   DOI   ScienceOn
6 Weltmeier, F., F. Rahmani, A. Ehlert, K. Dietrich, K. Schutze, X. Wang, C. Chaban, J. Hanson, M. Teige, K. Harter, J. Vicente-Carbajosa, S. Smeekens, and W. Droge-Laser. 2009. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol. Biol. 69, 107-119   DOI   ScienceOn
7 Wesley, S. V., C. A. Helliwell, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, and P. A. Stoutjesdijk. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581-590   DOI   ScienceOn
8 Holtorf, S., K. Apel, and H. Bohlmann. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29, 637-646   DOI   ScienceOn
9 Kusaba, M. 2004. RNA interference in crop plants. Curr. Opin. Biotechnol. 15, 139-143   DOI   ScienceOn
10 Kusaba, M., K. Miyahara, S. Iida, H. Fukuoka, T. Takano, H. Sassa, M. Nishimura, and T. Nishio. 2003. Low glutelin content 1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15, 1455-1467   DOI   ScienceOn
11 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497   DOI
12 Shabalina, S. A. and E. V. Koonin. 2008. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23, 578-587   DOI   ScienceOn
13 Park, H. Y., I. S. Kang, J. S. Han, C. H. Lee, G. An, and Y. H. Moon. 2009. OsDEG10 encoding a small RNA-binding protein is involved in abiotic stress signaling. Biochem. Biophys. Res. Commun. 380, 597-602   DOI   ScienceOn
14 Pereira, A. 2000. A transgenic perspective on plant functional genomics. Transgenic Res. 9, 245-260   DOI   ScienceOn
15 Sanders, P. R., J. A. Winter, A. R. Bamason, S. G. Rogers, and R. T. Fraley. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucl. Acids Res. 15, 1543-1558   DOI   ScienceOn
16 Hofgen, R. and L. Willmitzer. 1988. Storage of competent cells for Agrobacterium transformation. Nucl. Acids Res. 18, 9877
17 Holtorf, H., M. C. Guitton, and R. Reski. 2002. Plant functional genomics. Naturwissenschaften 89, 235-249   DOI   ScienceOn
18 Christensen, A. H., R. A. Sharrok, and P. H. Quail. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675-689   DOI   ScienceOn
19 Clough, S. J. and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743   DOI   ScienceOn
20 Fang, R. X., F. Nagy, S. Sivasubramaniam, and N. H. Chua. 1989. Multiple cis Regulatory Elements for Maximal Expression of the Cauliflower Mosaic Virus 35S Promoter in Transgenic Plants. Plant Cell 1, 141-150   DOI   ScienceOn
21 Harholt, J., J. K. Jensen, S. O. Sørensen, C. Orfila, M. Pauly, and H. V. Scheller. 2006. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in arabidopsis. Plant Physiol. 140, 49-58   DOI   ScienceOn
22 Gallie, D. R., D. E. Sleat, J. W. Watts, P. C. Turner, and T. M. A. Wilson. 1987. A comparison of eukaryotic viral 5'-reader sequences as enhancers of mRNA expression in vivo. Nucl. Acids Res. 15, 8693-8711   DOI   ScienceOn
23 Gao, P., Z. Xin, and Z. L. Zheng. 2008. The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis. PLoS ONE 3, e1387   DOI   ScienceOn
24 Hajdukiewicz, P., Z. Svab, and P. Maliga. 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989-994   DOI   ScienceOn
25 Herrera-Estrella, L., M. D. Block, E. Messens, J. P. Hernalsteens, M. V. Montagu, and J. Schell. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987-995
26 Hiei, Y., T. Komari, and T. Kubo. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35, 205-218   DOI   ScienceOn
27 Benfey, P. N., L. Ren, and N. H. Chua. 1990b. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J. 9, 1685-1696
28 An, G. 1986. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco tissue. Plant Physiol. 81, 86-91   DOI   ScienceOn
29 Benfey, P. N., L. Ren, and N. H. Chua. 1989. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 8, 2195-2202
30 Benfey, P. N., L. Ren, and N. H. Chua. 1990a. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 9, 1677-1684
31 Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12, 8711-8721   DOI   ScienceOn
32 Callis, J., T. Carpenter, C. W. Sun, and R. D. Vierstra. 1995. Structure and Evolution of Genes Encoding Polyubiquitin and Ubiquitin-Like Proteins in Arabidqpsis thaliana Ecotype Columbia. Genetics 159, 921-939
33 Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263, 802-805   DOI
34 Zheng, X., W. Deng, K. Luo, H. Duan, Y. Chen, R. McAvoy, S. Song, Y. Pei, and Y. Li. 2007. The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep. 26, 1195-1203   DOI   ScienceOn
35 Zhang, H., C. Ransom, P. Ludwig, and S. van Nocker. 2003. Genetic Analysis of Early Flowering Mutants in Arabidopsis Defines a Class of Pleiotropic Developmental Regulator Required for Expression of the Flowering-Time Switch Flowering Locus C. Genetics 164, 347-358