Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.8.895

Correlation of Gene Expression between Adiponectin and Glucose Transporter 4 in Mouse Adipose Tissue  

Lee, Yong-Ho (Department of Biomedical Science, Catholic University of Daegu)
Publication Information
Journal of Life Science / v.24, no.8, 2014 , pp. 895-902 More about this Journal
Abstract
Adiponectin has been known to improve insulin sensitivity and elicit glucose uptake via increased glucose transporter 4 (GLUT4) translocation. In the current study, mRNA expression levels of adiponectin and GLUT4 were measured in subcutaneous adipose tissue from C57BL/6 mice fed normal (ND) or high-fat diet (HFD) until 16, 26, 36, 47, or 77 weeks of age starting from 6 weeks of age. Expression levels were also measured in mice with calorie restriction (CR) and in thiazolidinedione (TZD) treated mice. Using quantitative real-time PCR, we demonstrated that GLUT4 expression in adipose tissue significantly decreased in HFD mice groups and increased in CR (p<0.05) and TZD (p=0.007) groups while there was no difference in adiponectin mRNA expression levels between experimental and control groups. General linear regression models were used to assess the association of gene expression levels between adiponectin and GLUT4 and to determine whether adiponectin affects GLUT4 transcription. mRNA expression levels of adiponectin and GLUT4 are significantly associated each other in mice fed a ND (p<0.0001) or HFD (p<0.0001), in groups separated into each age and diet, and CR group (p=0.002), but not in TZD group (p=0.73). These results demonstrated that gene expression of adiponectin and GLUT4 is strongly associated, suggesting that there is a common regulatory mechanism for adiponectin and GLUT4 gene expression and/or adiponectin has a direct role in GLUT4 gene expression in adipose tissue.
Keywords
Adiponectin; adipose tissue; diet-induced obesity; glucose transporter 4; real-time PCR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Armoni, M., Kritz, N., Harel, C., Bar-Yoseph, F., Chen, H., Quon, M. J. and Karnieli, E. 2003. Peroxisome proliferator- activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem 278, 30614-30623.   DOI   ScienceOn
2 Barnea, M., Shamay, A., Stark, A. H. and Madar, Z. 2006. A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression. Obesity (Silver Spring) 14, 2145-2153.   DOI
3 Bays, H. E. 2009. "Sick fat," metabolic disease, and atherosclerosis. Am J Med 122, S26-37.   DOI   ScienceOn
4 Berg, A. H., Combs, T. P. and Scherer, P. E. 2002. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13, 84-89.   DOI   ScienceOn
5 Bullen, J. W. Jr., Bluher, S., Kelesidis, T. and Mantzoros, C. S. 2007. Regulation of adiponectin and its receptors in response to development of diet-induced obesity in mice. Am J Physiol Endocrinol Metab 292, E1079-1086.   DOI
6 Ceddia, R. B., Somwar, R., Maida, A., Fang, X., Bikopoulos, G. and Sweeney, G. 2005. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132-139.   DOI   ScienceOn
7 Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E. and Lodish, H. F. 2001. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 98, 2005-2010.   DOI   ScienceOn
8 Fu, Y., Luo, N., Klein, R. L. and Garvey, W. T. 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res 46, 1369-1379.   DOI   ScienceOn
9 Havel, P. J. 2002. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 13, 51-59.   DOI   ScienceOn
10 Higuchi, A., Ohashi, K., Shibata, R., Sono-Romanelli, S., Walsh, K. and Ouchi, N. 2010. Thiazolidinediones reduce pathological neovascularization in ischemic retina via an adiponectin-dependent mechanism. Arterioscler Thromb Vasc Biol 30, 46-53.   DOI   ScienceOn
11 Kim, J., Jeong, J. I., Kim, K. M., Choi, I., Pratley, R. E. and Lee, Y. H. 2014. Improved glucose tolerance with restored expression of glucose transporter 4 in C57BL/6 mice after a long period of high-fat diet feeding. Animal Cells Syst(Seoul) 18, 197-203.   과학기술학회마을   DOI   ScienceOn
12 Jensterle, M., Janez, A., Mlinar, B., Marc, J., Prezelj, J. and Pfeifer, M. 2008. Impact of metformin and rosiglitazone treatment on glucose transporter 4 mRNA expression in women with polycystic ovary syndrome. Eur J Endocrinol 158, 793-801.   DOI   ScienceOn
13 Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K. and Tobe, K. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116, 1784-1792.   DOI   ScienceOn
14 Kahn, B. B. 1992. Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. J Clin Invest 89, 1367-1374.   DOI
15 Lee, Y. H. and Pratley, R. E. 2007. Abdominal obesity and cardiovascular disease risk: the emerging role of the adipocyte. J Cardiopulm Rehabil Prev 27, 2-10.   DOI
16 Lee, Y. H. and Pratley, R. E. 2005. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep 5, 70-75.   DOI   ScienceOn
17 Lee, Y. H., Tharp, W. G., Maple, R. L., Nair, S., Permana, P. A. and Pratley, R. E. 2008. Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity (Silver Spring) 16, 1493-1500.   DOI   ScienceOn
18 Minokoshi, Y., Kahn, C. R. and Kahn, B. B. 2003. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 278, 33609-33612.   DOI   ScienceOn
19 Mantzoros, C. S., Li, T., Manson, J. E., Meigs, J. B. and Hu, F. B. 2005. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J Clin Endocrinol Metab 90, 4542-4548.   DOI
20 Marecki, J. C., Ronis, M. J., Shankar, K. and Badger, T. M. 2011. Hyperinsulinemia and ectopic fat deposition can develop in the face of hyperadiponectinemia in young obese rats. J Nutr Biochem 22, 142-152.   DOI   ScienceOn
21 Martinez, L., Berenguer, M., Bruce, M. C., Le Marchand- Brustel, Y. and Govers, R. 2010. Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling. Biochem Pharmacol 79, 1300-1309.   DOI   ScienceOn
22 Ouchi, N., Parker, J. L., Lugus, J. J. and Walsh, K. 2011. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11, 85-97.   DOI   ScienceOn
23 Park, S. Y., Choi, G. H., Choi, H. I., Ryu, J., Jung, C. Y. and Lee, W. 2005. Calorie restriction improves whole-body glucose disposal and insulin resistance in association with the increased adipocyte-specific GLUT4 expression in Otsuka Long-Evans Tokushima fatty rats. Arch Biochem Biophys 436, 276-284.   DOI   ScienceOn
24 Pi-Sunyer, F. X. 2002. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 10 Suppl 2, 97S-104S.   DOI
25 Rajala, M. W. and Scherer, P. E. 2003. Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144, 3765-3773.   DOI   ScienceOn
26 Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. and Lodish, H. F. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270, 26746-26749.   DOI   ScienceOn
27 Vozarova, B., Stefan, N., Lindsay, R. S., Krakoff, J., Knowler, W. C., Funahashi, T., Matsuzawa, Y., Stumvoll, M., Weyer, C. and Tataranni, P. A. 2002. Low plasma adiponectin concentrations do not predict weight gain in humans. Diabetes 51, 2964-2967.   DOI   ScienceOn
28 Shimada, K., Miyazaki, T. and Daida, H. 2004. Adiponectin and atherosclerotic disease. Clin Chim Acta 344, 1-12.   DOI   ScienceOn
29 Staels, B. and Fruchart, J. C. 2005. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54, 2460-2470.   DOI   ScienceOn
30 Tomas, E., Tsao, T. S., Saha, A. K., Murrey, H. E., Zhang Cc, C., Itani, S. I., Lodish, H. F. and Ruderman, N. B. 2002. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 99, 16309-16313.   DOI   ScienceOn
31 Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R. E. and Tataranni, P. A. 2001. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86, 1930-1935.   DOI
32 Winzer, C., Wagner, O., Festa, A., Schneider, B., Roden, M., Bancher-Todesca, D., Pacini, G., Funahashi, T. and Kautzky- Willer, A. 2004. Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus. Diabetes Care 27, 1721-1727.   DOI   ScienceOn
33 Wu, X., Motoshima, H., Mahadev, K., Stalker, T. J., Scalia, R. and Goldstein, B. J. 2003. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355-1363.   DOI   ScienceOn
34 Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama- Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P. and Kadowaki, T. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7, 941-946.   DOI   ScienceOn
35 Ziemke, F. and Mantzoros, C. S. 2010. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr 91, 258S-261S.   DOI   ScienceOn
36 Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y., Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi, K., Horie, M., Takeda, S., Aoyama, T., Funahashi, T. and Matsuzawa, Y. 2002. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8, 731-737.   DOI   ScienceOn
37 Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R. and Kadowaki, T. 2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769.   DOI   ScienceOn
38 Estrany, M. E., Proenza, A. M., Gianotti, M. and Llado, I. 2013. High-fat diet feeding induces sex-dependent changes in inflammatory and insulin sensitivity profiles of rat adipose tissue. Cell Biochem Funct 31, 504-510.   DOI   ScienceOn