DOI QR코드

DOI QR Code

GENE EXPRESSION OF HUMAN CORONARY ARTERY ENDOTHELIAL CELLS IN RESPONSE TO PORPHYROMONAS ENDODONTALIS INVASION

Porphyromonas endodontalis의 침투에 따른 혈관 내피세포의 유전자 발현

  • Kong, Hee-Joung (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Kyoung-Kyu (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Park, Sang-Hyuk (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Lee, Jin-Yong (Institute of oral biology, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Gi-Woon (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University)
  • 공희정 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최경규 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상혁 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 이진용 (경희대학교 대학원 치의학과 구강생물학연구소) ;
  • 최기운 (경희대학교 대학원 치의학과 치과보존학교실)
  • Published : 2009.11.30

Abstract

During the last two decades, there has been an increasing interest in the impact of oral health on atherosclerosis and subsequent cardiovascular disease (CVD). To date, some periodontal pathogens including Porphyromonas gingivalis (P. gingivalis) have been reported to be relevant to CVD. Porphyromonas endodontalis (P. endodontalis), which shares approximately 87% sequence homology with P. gingivalis, is mostly found within infected root canals. However, recent studies reveal that this pathogen also resides in the dental plaque or periodontal pocket in patients with periodontitis. It has been shown that P. endodontalis invades human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC). To evaluate whether P. endodontalis can participate in the progression of atherosclerosis and CVD, we examined the changes in transcriptional gene expression profiles of HCAEC responding to invaion by P. endodontalis in this study. The following results were obtained. 1. Porphyromonas endodontalis was invasive of HCAEC. 2. According to the microarray analysis, there were 625 genes upregulated more than two-folds, while there were 154 genes downregulated by half. 3. Upregulated genes were relevant to inflammatory cytokines, apoptosis, coagulation and immune response. Enhanced expression of MMP-1 was also noticeable. 4. The transcription profiles of the 10 selected genes examined by real-time PCR agreed well with those observed in the microarray analysis. Thus, these results show that P. endodontalis presents the potential to trigger and augment atherosclerosis leading to CVD.

본 연구에서는 Porphyromonas endodontalis와 죽상경화증 및 심혈관질환과의 관계를 알아보기 위해, P. endodontalis가 사람의 관상동맥 내피세포에 침투했을 때 나타나는 유전자 발현의 변화를 microarray와 real-time PCR로 측정하였고, 발현이 증가된 유전자 중에서 죽상경화증과 연관된 유전자들이 관련 KEGG pathway 상에서 유의성 있는 영향을 미치는지를 분석하여 다음과 같은 결과를 얻었다. 1. Porphyromonas endodontalis는 사람의 관상동맥 내피세포에 침투하였다. 2. Microarray 분석결과, 대조군보다 발현이 2배 이상 증가된 유전자는 625개였고, 1/2이하로 감소된 유전자는 154개였다. 3. 발현이 2배 이상 증가된 유전자 중에는 염증성 cytokine 및 chemokine, 세포자멸사, 혈액응고와 면역반응 관련 유전자들이 포함되었다. 4. Microarray 분석결과를 확인하기 위해 발현이 2배 이상 증가된 유전자 중에서 10개의 유전자를 선택하여 real-time PCR을 시행하였고, 그 결과 microarray에서와 마찬가지로 발현 정도가 대조군보다 모두 높게 나타났다. 따라서 P. endodontalis가 사람의 관상동맥 내피세포에 만성적으로 작용했을 때, 심혈관질환에서 중요한 부분을 차지하는 죽상경화증을 유발하는 위험 요소 중의 하나로 작용할 수 있을 것으로 판단된다. 이와 관련된 자세한 기전을 이해하기 위해서는 앞으로 더 많은 연구가 필요할 것으로 보인다.

Keywords

References

  1. van Winkelhoff AJ, Carlee AW, de Graaff J. Bacteroides endodontalis and other black-pigmented Bacteroides species in odontogenic abscesses. Infect Immun 49(3):494-497, 1985
  2. Seltzer S, Farber PA. Microbiologic factors in endodontology. Oral Surg Oral Med Oral Pathol 78(5):634-645, 1994 https://doi.org/10.1016/0030-4220(94)90178-3
  3. van Steenbergen TJM, van Winkelhoff AJ, Mayrand D, Grenier D, De Graaff J. Bacteroides endodontalis sp. nov., an asaccharolytic black-pigmented Bacteroides species from infected dental root canals. Int J Syst Bacteriol 34(2):118-120, 1984 https://doi.org/10.1099/00207713-34-2-118
  4. Hashioka K, Yamasaki M, Nakane A, Horiba N, Nakamura H. The relationship between clinical symptoms and anaerobic bacteria from infected root canals. J Endod 18(11):558-561, 1992 https://doi.org/10.1016/S0099-2399(06)81214-8
  5. Machado de Oliveira JC, Siqueira JF, Alves GB, Hirata R, Andrade AFB. Detection of Porphyromonas endodontalis in infected root canals by 16S rRNA genedirected polymerase chain reaction. J Endod 26(12):729-732, 2000 https://doi.org/10.1097/00004770-200012000-00016
  6. van Winkelhoff AJ, van Steenbergen TJ, Kippuw N, De Graaff J. Further characterization of Bacteroides endodontalis, an asaccharolytic black-pigmented Bacteroides species from the oral S cavity. J Clin Microbiol 22(1):75-79, 1985
  7. Tanner AC, Paster BJ, Lu SC, Kanasi E, Kent R Jr, Van Dyke T, Sonis ST. Subgingival and tongue microbiota during early periodontitis. J Dent Res 85 (4):318-323, 2006 https://doi.org/10.1177/154405910608500407
  8. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ. New bacterial species associated with chronic periodontitis. J Dent Res 82(5):338-344, 2003 https://doi.org/10.1177/154405910308200503
  9. Dahlen G, Leonhardt A. A new checkerboard panel for testing bacterial markers in periodontal disease. Oral Microbiol Immunol 21(1):6-11, 2006 https://doi.org/10.1111/j.1399-302X.2005.00243.x
  10. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 340(2):115-126, 1999 https://doi.org/10.1056/NEJM199901143400207
  11. Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol 20(11 supple II):II3-10, 1997
  12. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol 12(4):383-389, 2001 https://doi.org/10.1097/00041433-200108000-00003
  13. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 109(21 suppl 1):II2-10, 2004 https://doi.org/10.1161/01.CIR.0000129535.04194.38
  14. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 105(9):1135-1143, 2002 https://doi.org/10.1161/hc0902.104353
  15. Lusis AJ. Atherosclerosis. Nature 407(6801):233-241, 2000 https://doi.org/10.1038/35025203
  16. Libby P. Inflammation in atherosclerosis. Nature 420(6917):868-874, 2002 https://doi.org/10.1038/nature01323
  17. Saikku P, Leinonen M, Tenkanen L, Linnanmaki E, Ekman MR, Manninen V, Manttari M, Frick MH, Huttunen JK. Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Intern Med 116(4):273-278, 1992 https://doi.org/10.7326/0003-4819-116-4-273
  18. Mendall MA, Goggin PM, Molineaux N, Levy J, Toosy T, Strachan D, Camm AJ, Northfield TC. Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J 71(5):437-439, 1994 https://doi.org/10.1136/hrt.71.5.437
  19. Hajjar DP, Fabricant CG, Minick CR, Fabricant J. Virus-induced atherosclerosis. Herpesvirus infection alters aortic cholesterol metabolism and accumulation. Am J Pathol 122(1): 62-70, 1986
  20. Epstein SE, Zhu J, Burnett MS, Zhou YF, Vercellotti G, Hajjar D. Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb Vasc Biol 20(6):1417-1420, 2000 https://doi.org/10.1161/01.ATV.20.6.1417
  21. Epstein SE. The multiple mechanisms by which infection may contribute to atherosclerosis development and course. Circ Res 90(1):2-4, 2002
  22. Espinola-Klein C, Rupprecht HJ, Blankenberg S, Bickel C, Kopp H, Rippin G, Victor A, Hafner G, Schlumberger W, Meyer J. Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation 105(1):15-21, 2002 https://doi.org/10.1161/hc0102.101362
  23. Mattila KJ, Nieminen MS, Valtonen VV, Rasi VP, Kesaniemi YA, Syrjala SL, Jungell PS, Isoluoma M, Hietaniemi K, Jokinen MJ. Association between dental health and acute myocardial infarction. BMJ 298 (6676):779-781, 1989 https://doi.org/10.1136/bmj.298.6676.779
  24. Beck J, Garcia R, Heiss G, Vokonas PS, Offenbacher S. Periodontal disease and cardiovascular disease. J Periodontol 67(10 suppl):1123-1137, 1996 https://doi.org/10.1902/jop.1996.67.10.1123
  25. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 71(10):1554-1560, 2000 https://doi.org/10.1902/jop.2000.71.10.1554
  26. Spahr A, Klein E, Khuseyinova N, Boeckh C, Muche R, Kunze M, Rothenbacher D, Pezeshki G, Hoffmeister A, Koenig W. Periodontal infections and coronary heart disease: role of periodontal bacteria and importance of total pathogen burden in the Coronary Event and Periodontal Disease (CORODONT) study. Arch Intern Med 166(5):554-559, 2006 https://doi.org/10.1001/archinte.166.5.554
  27. Deshpande RG, Khan MB, Genco CA. Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infect Immun 66(11):5337-5343, 1998
  28. Dorn BR, Dunn WA Jr, Progulske-Fox A. Invasion of human coronary artery cells by periodontal pathogens. Infect Immun 67(11):5792-5798, 1999
  29. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801-809, 1993 https://doi.org/10.1038/362801a0
  30. Paster BJ, Dewhirst FE, Olsen I, Fraser GJ. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol 176(3):725-732, 1994 https://doi.org/10.1128/jb.176.3.725-732.1994
  31. Dorn BR, Harris LJ, Wujick CT, Vertucci FJ, Progulske-Fox A. Invasion of vascular cells in vitro by Porphyromonas endodontalis. Int Endod J 35(4):366-371, 2002 https://doi.org/10.1046/j.0143-2885.2001.00489.x
  32. Gibbons RJ. Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res 68(5):750-760,1989 https://doi.org/10.1177/00220345890680050101
  33. Falkow S. Bacterial entry into eukaryotic cells. Cell 65(7):1099-1102, 1991 https://doi.org/10.1016/0092-8674(91)90003-H
  34. Pearce E, Tregouet DA, Samnegard A, Morgan AR, Cox C, Hamsten A, Eriksson P, Ye S. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Cir Res 97(10):1070-1076, 2005 https://doi.org/10.1161/01.RES.0000189302.03303.11
  35. Presta M, Camozzi M, Salvatori G, Rusnati M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med 11(4):723-738, 2007 https://doi.org/10.1111/j.1582-4934.2007.00061.x
  36. Lee YW, Eum SY, Chen KC, Hennig B, Toborek M. Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med 10(1-6):19-27, 2004 https://doi.org/10.1007/s00894-003-0164-7
  37. Ito T, Ikeda U. Inflammatory cytokines and cardiovascular disease. Curr Drug Targets Inflamm Allergy 2(3):257-265, 2003 https://doi.org/10.2174/1568010033484106
  38. Chou HH, Yumoto H, Davey M, Takahashi Y, Miyamoto T, Gibson FC 3rd, Genco CA. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells. Infect Immun 73(9):5367-5378, 2005 https://doi.org/10.1128/IAI.73.9.5367-5378.2005
  39. Gagarin D, Yang Z, Butler J, Wimmer M, Du B, Cahan P, McCaffrey TA. Genomic profiling of acquired resistance to apoptosis in cells derived from human athero sclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL. J Mol Cell Cardiol 39(3):453-465, 2005 https://doi.org/10.1016/j.yjmcc.2005.01.015
  40. Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187(4):487-496, 1998 https://doi.org/10.1084/jem.187.4.487
  41. Zhu H, Shen Y, Shenk T. Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 69(12):7960-7970, 1995
  42. Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol 10(6):649-655, 2000 https://doi.org/10.1016/S0959-440X(00)00146-9
  43. Xu G, Gong Z, Yu W, Gao L, He S, Qian Z. Increased expression ratio of Bcl-2/Bax is associated with crocinmediated apoptosis in bovine aortic endothelial cells. Basic Clin Pharmacol Toxicol 100(1):31-35, 2007 https://doi.org/10.1111/j.1742-7843.2007.00001.x
  44. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322-1326, 1998 https://doi.org/10.1126/science.281.5381.1322
  45. Toutouzas K, Androulakis G, Chatzigianni E, Davaris PS, Karayannis M, Konstadoulakis MM, Messaris E. Expression of c-myc and H-ras and absence of expression of p53 and bcl-2 genes in atherosclerotic human carotid arteries. J Clin Basic Cardiol 5(3):253-256,2002
  46. Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 189(11):1815-1822, 1999 https://doi.org/10.1084/jem.189.11.1815
  47. Jung IK, Kim DM, Kim BY, Kim YG, Kim IJ, Kim TH, Park JY, Son SM, Yoo HJ, Lee MK, Lee BY, Lee IK, Cha BY. NF-kB and atherosclerosis. Biowave 9(7):1-13, 2007
  48. Esemuede N, Lee T, Pierre-Paul D, Sumpio BE, Gahtan V. The role of thrombospondin-1 in human disease. J Surg Res 122(1):135-142, 2004 https://doi.org/10.1016/j.jss.2004.05.015
  49. Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 4(6):1186-1193, 2006 https://doi.org/10.1111/j.1538-7836.2006.01949.x
  50. Dadgostar H, Zarnegar B, Hoffmann A, Qin XF, Truong U, Rao G, Baltimore D, Cheng G. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc Natl Acad Sci USA 99(3):1497-1502, 2002 https://doi.org/10.1073/pnas.032665099
  51. Mach F, Schonbeck U, Libby P. CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis 137 suppl:S89-95, 1998 https://doi.org/10.1016/S0021-9150(97)00309-2
  52. Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 22(10):1547-1559, 2002 https://doi.org/10.1161/01.ATV.0000029720.59649.50
  53. Haskard DO, Boyle JJ, Mason JC. The role of complement in atherosclerosis. Curr Opin Lipidol 19(5):478-482, 2008 https://doi.org/10.1097/MOL.0b013e32830f4a06