DOI QR코드

DOI QR Code

Characterizations of the Antimicrobial Resistant Determinants in Proteus spp. Isolated from Humans and Chickens in the Chungcheong Province

충청지역의 사람과 닭으로부터 분리된 Proteus속에 속하는 균주에 존재하는 항균제 내성유전자의 유전형 분석

  • Sung, Ji Youn (Department of Biomedical Laboratory Science, Far East University)
  • 성지연 (극동대학교 임상병리학과)
  • Received : 2016.10.28
  • Accepted : 2016.11.20
  • Published : 2016.12.31

Abstract

Recently, antimicrobial resistance of pathogenic bacteria has been increasing due to excessive use of antimicrobial agents in both humans and livestock. PCR amplification and nucleotide sequence analyses were conducted to investigate16S ribosomal RNA methyltransferase (RMTase) genes and integrons in P. mirabilis strains isolated from clinical specimens and chickens in an area of the Chungcheong providence. In addition, clonality analysis of P. mirabilis strains was performed using a repetitive extragenic palindromic sequence-based PCR (REP-PCR) method. Of the total 38 P. mirabilis isolates, 7 (18.4%) strains were isolated from clinical specimens contained in the RMTase genes and showed resistance to amikacin, tobramycin, and gentamicin. A total of 23 (60.5%) isolates carried class 1 integrons, but no isolates in our study harbored class 2 and class 3 integrons. Class 1 integrons detected in our study harbored genes encoding resistance to aminoglycosides (aadA2, aadA5, aadA7, and aacCA5), ${\beta}$-lactams ($bla_{PSE}$), erythromycin (ereA), lincosamides (linF), and trimethoprim (dfrA12, dfrA17, and dfrA32). We confirmed that the RMTase genes had spread among only the P. mirabilis isolates from clinical specimens, but class 1 integrons had widely disseminated among P. mirabilis isolates from clinical specimens and chickens. In addition, identical REP-PCR banding patterns were evidenced in only P. mirabilis isolates from chickens. Our results suggest the horizontal spreading of P. mirabilis isolates in the chicken farm. To prevent further spreading of antimicrobial resistant genes among P. mirabilis isolates, monitoring and clinical policing will be required.

최근 사람과 가축에 항균제의 과도한 사용으로 감염병을 일으키는 병원성 세균들의 항균제 내성이 증가하고 있다. 본 연구에서는 PCR과 염기서열분석법을 이용하여 충청지역 일개의 대학병원에 의뢰된 임상검체와 같은 지역에서 사육된 닭으로부터 분리된 P. mirabilis 균주를 대상으로 16S ribosomal RNA methyltransferase(RMTase) 유전자와 integron을 조사하였다. 또한 Repetitive extragenic palindromic sequence-based PCR (REP-PCR)을 이용하여 P. mirabilis 균주들의 역학적 연관성 조사하였다. 총 38균주의 P. mirabilis 중에서 임상검체로부터 분리된 7균주 (18.4%)만이 RMTases 유전자를 가지고 있었는데 이들은 모두 amikacin, tobramycin, 및 gentamicin에 내성을 나타냈다. 또한 대상균주 중 23균주(60.5%)가 class 1 integron을 가지고 있는 것으로 나타났으며 class 2 및 class 3 integron은 검출되지 않았다. 본 연구에서 확인된 integrons에는 aminoglycoside 내성유전자(aadA2, aadA5, aadA7, 및 aacCA5), ${\beta}$-lactmam 내성유전자($bla_{PSE}$), erythromycin 내성유전자(ereA), lincosamides 내성유전자(linF), 및 trimethoprim 내성유전자(dfrA12, dfrA17 및 dfrA32)등이 유전자 카세트로 포함되어 있었다. 본 연구결과 RMTase 유전자는 임상검체로부터 분리된 P. mirabilis 균주에만 확산되어 있었던 반면 class 1 integrons는 임상검체와 닭으로부터 분리된 P. mirabilis 균주에 광범위하게 확산되어 있음을 확인할 수 있었다. 게다가 닭으로부터 분리된 균주 중에는 동일한 REP-PCR 밴드패턴을 보인 균주들이 있었는데 이는 닭들 사이에서 P. mirabilis 균주가 수평확산 되었음을 의미한다. P. mirabilis 균주에서 항균제 내성유전자의 확산을 막기 위해서는 내성유전자 지속적인 모니터링과 감시가 필요할 것으로 사료된다.

Keywords

References

  1. Levy SB. Antibiotic resistance: an ecological imbalance. Ciba Found Symp. 1997;207:1-9.
  2. Rho H, Shin B, Lee O, Choi YH, Rho J, Lee J. Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. J Environ Monit. 2012;14:1616-1621. https://doi.org/10.1039/c2em30168g
  3. Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm. 2016;7:11-27. https://doi.org/10.1039/C5MD00344J
  4. Park YJ. Aminoglycoside resistance in gram-negative bacilli. Korean J Clin Microbiol. 2009;12:57-61. https://doi.org/10.5145/KJCM.2009.12.2.57
  5. Wei Q, Hu Q, Li S, Lu H, Chen G, Shen B, et al. A novel functional class 2 integron in clinical Proteus mirabilis isolates. J Antimicrob Chemother. 2014;69:973-976. https://doi.org/10.1093/jac/dkt456
  6. Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015;3:1-66.
  7. Sader HS, Flamm RK, Jones RN. Frequency of occurrence and antimicrobial susceptibility of Gram-negative bacteremia isolates in patients with urinary tract infection: results from United States and European hospitals (2009-2011). J Chemother. 2014;26:133-138. https://doi.org/10.1179/1973947813Y.0000000121
  8. CLSI. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. CLSI document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute;2010, p52-53.
  9. Hidalgo L, Hopkins KL, Gutierrez B, Ovejero CM, Shukla S, Douthwaite S, et al. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother. 2013;68:1543-1550. https://doi.org/10.1093/jac/dkt078
  10. Dillon B, Thomas L, Mohmand G, Zelynski A, Iredell J. Multiplex PCR for screening of integrons in bacterial lysates. J Microbiol Methods. 2005;62:221-232. https://doi.org/10.1016/j.mimet.2005.02.007
  11. Levesque C, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother.1995;39:185-191. https://doi.org/10.1128/AAC.39.1.185
  12. Bou G, Cervero G, Dominguez MA, Quereda C, Martinez-Beltran J. PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2000;6:635-643. https://doi.org/10.1046/j.1469-0691.2000.00181.x
  13. Nahar A, Siddiquee M, Nahar S, Anwar KS, Islam S. Multidrug resistant-Proteus Mirabilis isolated from chicken droppings in commercial poultry farms: bio-security concern and emerging public health threat in Bangladesh. J Biosafety Health Educ. 2014;2:1-5.
  14. Galani I, Souli M, Panagea T, Poulakou G, Kanellakopoulou K, Giamarellou H. Prevalence of 16S rRNA methylase genes in Enterobacteriaceae isolates from a Greek university hospital. Clin Microbiol Infect. 2012;18:52-54. https://doi.org/10.1111/j.1469-0691.2011.03738.x
  15. Shin SY, Kwon KC, Park J W, Song JH, Ko YH, Sung JY, et al. Characteristics of aac(6')-Ib-cr gene in extended-spectrum ${\beta}$-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from Chungnam area. Korean J Lab Med. 2009;29:541-550. https://doi.org/10.3343/kjlm.2009.29.6.541
  16. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45:88-94. https://doi.org/10.1086/518605
  17. Wei Q1, Hu Q, Li S, Lu H, Chen G, Shen B, et al. A novel functional class 2 integron in clinical Proteus mirabilis isolates. J Antimicrob Chemother. 2014;69:973-976. https://doi.org/10.1093/jac/dkt456
  18. Dessie HK, Bae DH, Lee YJ. Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Poult Sci. 2013;92:3036-3043. https://doi.org/10.3382/ps.2013-03312
  19. Sung JY, Byeon YG. Characterizations of class 1 integrons in Proteus mirabilis isolated from chickens at Chungcheong province. Korean J Clin Lab Sci. 2015;47:65-70 https://doi.org/10.15324/kjcls.2015.47.2.65