• 제목/요약/키워드: p-uniformly convex

검색결과 28건 처리시간 0.021초

THE PROXIMAL POINT ALGORITHM IN UNIFORMLY CONVEX METRIC SPACES

  • Choi, Byoung Jin;Ji, Un Cig
    • 대한수학회논문집
    • /
    • 제31권4호
    • /
    • pp.845-855
    • /
    • 2016
  • We introduce the proximal point algorithm in a p-uniformly convex metric space. We first introduce the notion of p-resolvent map in a p-uniformly convex metric space as a generalization of the Moreau-Yosida resolvent in a CAT(0)-space, and then we secondly prove the convergence of the proximal point algorithm by the p-resolvent map in a p-uniformly convex metric space.

Certain Subclasses of k-uniformly Functions Involving the Generalized Fractional Differintegral Operator

  • Seoudy, Tamer Mohamed
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.243-255
    • /
    • 2018
  • We introduce several k-uniformly subclasses of p-valent functions defined by the generalized fractional differintegral operator and investigate various inclusion relationships for these subclasses. Some interesting applications involving certain classes of integral operators are also considered.

A FIXED POINT THEOREM FOR NONEXPANSIVE SEMIGROUPS IN P-UNIFORMLY CONVEX BANACH SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • 제3권1호
    • /
    • pp.47-54
    • /
    • 1996
  • We prove that if RUC(S) has a left invariant mean ${\rho}={T_{S} : s \;{\in}\; S}$ is a continuous repesentation of S as nonexpansive map-pings on a closed convex subset C of a p-uniformly convex and p-uniformly smooth Banach space and C contains an element of bounded orbit then C contains a common fixed point for ${\rho}$.

Certain Subclasses of k-Uniformly Starlike and Convex Functions of Order α and Type β with Varying Argument Coefficients

  • AOUF, MOHAMED KAMAL;MAGESH, NANJUNDAN;YAMINI, JAGADESAN
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.383-394
    • /
    • 2015
  • In this paper, we define two new subclass of k-uniformly starlike and convex functions of order ${\alpha}$ type ${\beta}$ with varying argument of coefficients. Further, we obtain coefficient estimates, extreme points, growth and distortion bounds, radii of starlikeness, convexity and results on modified Hadamard products.

STUDY ON UNIFORMLY CONVEX AND UNIFORMLY STARLIKE MULTIVALENT FUNCTIONS ASSOCIATED WITH LIBERA INTEGRAL OPERATOR

  • Mayyadah Gh. Ahmed;Shamani Supramaniam
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.81-93
    • /
    • 2023
  • By utilizing a certain Libera integral operator considered on analytic multivalent functions in the unit disk U. Using the hypergeometric function and the Libera integral operator, we included a new convolution operator that expands on some previously specified operators in U, which broadens the scope of certain previously specified operators. We introduced and investigated the properties of new subclasses of functions f (z) ∈ Ap using this operator.

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.215-231
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.

  • PDF

STRONG CONVERGENCE OF MODIFIED ISHIKAWA ITERATES FOR ASYMPTOTICALLY NONEXPANSIVE MAPS WITH NEW CONTROL CONDITIONS

  • Eldred, A. Anthony;Mary, P. Julia
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1271-1284
    • /
    • 2018
  • In this paper, we establish strong convergence of the modified Ishikawa iterates of an asymptotically non expansive self-mapping of a nonempty closed bounded and convex subset of a uniformly convex Banach space under a variety of new control conditions.

ON A CERTAIN CLASS OF p-VALENT UNIFORMLY CONVEX FUNCTIONS USING DIFFERENTIAL OPERATOR

  • Lee, S.K.;Khairnar, S.M.;Rajas, S.M.
    • Korean Journal of Mathematics
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2011
  • In this paper, using differential operator, we have introduce new class of p-valent uniformly convex functions in the unit disc U = {z : |z| < 1} and obtain the coefficient bounds, extreme bounds and radius of starlikeness for the functions belonging to this generalized class. Furthermore, partial sums $f_k(z)$ of functions $f(z)$ in the class $S^*({\lambda},{\alpha},{\beta})$ are considered. The various results obtained in this paper are sharp.

CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

  • Saluja, Gurucharan Singh
    • East Asian mathematical journal
    • /
    • 제27권1호
    • /
    • pp.35-49
    • /
    • 2011
  • In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to com mon fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

CONVERGENCE TO COMMON FIXED POINTS FOR A FINITE FAMILY OF GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • 제29권1호
    • /
    • pp.23-37
    • /
    • 2013
  • The purpose of this paper is to study an implicit iteration process with errors and establish weak and strong convergence theorems to converge to common fixed points for a finite family of generalized asymptotically quasi-nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve and generalize some known results from the existing literature.