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STRONG CONVERGENCE OF MODIFIED ISHIKAWA

ITERATES FOR ASYMPTOTICALLY NONEXPANSIVE MAPS

WITH NEW CONTROL CONDITIONS

A. Anthony Eldred and P. Julia Mary

Abstract. In this paper, we establish strong convergence of the mod-
ified Ishikawa iterates of an asymptotically non expansive self-mapping

of a nonempty closed bounded and convex subset of a uniformly convex

Banach space under a variety of new control conditions.

1. Introduction and preliminaries

The class of asymptotically nonexpansive maps was introduced by Goebel
and Kirk [5] in 1972, they proved that every asymptotically nonexpansive self-
mapping of a nonempty closed bounded and convex subset of a uniformly
convex Banach space has a fixed point. In the past few decades fixed point
iterations of Mann and Ishikawa schemes have been extensively studied by var-
ious authors to approximate fixed points of nonexpansive and asymptotically
nonexpansive mappings. Mann and Ishikawa process were first studied for non-
expansive operators and later it was modified to study the convergence of fixed
points of asymptotically nonexpansive mappings see [2–4,6–10,12].

In all these results the control sequences {αn} and {βn} are required to be
bounded away from 0 and 1. Our objective is to show that the strong conver-
gence is still true when αn is allowed to approach 0 or 1 and βn is allowed to
approach 0 and thereby extending the validity of Mann’s and Ishikwa iteration
scheme. In particular we show that if E is uniformly convex, C a nonempty
closed convex and bounded subset of E and T : C → C is a completely con-
tinuous asymptotically nonexpansive mapping with sequence {kn} satisfying
kn ≥ 1 and

∑∞
n=1(k2n − 1) < ∞ and the sequence {xn} is defined by the

Mann’s iteration

xn+1 =
1

n
Tnxn + (1− 1

n
)xn
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or the Ishikawa iteration{
xn+1 = (1− 1

n )Tnyn + 1
nxn;

yn = 1
nT

nxn + (1− 1
n )xn,

then {xn} strongly converges to a fixed point of T .
Let us see some basic concepts and results related to our work.
Let E be a real Banach space and let C be a nonempty closed convex subset

of E. A self mapping T : C → C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ,∀x, y ∈ C(1)

and asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖ , ∀x, y ∈ C and n ≥ 1.(2)

Let C be a nonempty convex subset of a normed linear space E, T : C → C a
mapping and {αn} and {βn} be two sequences in [0, 1]. The sequence {xn}∞n=1

defined by 
x0 ∈ C;

xn+1 = αnT
nyn + (1− αn)xn;

yn = βnT
nxn + (1− βn)xn,

(3)

is called the modified Ishikawa iterative process.
The Ishikawa iteration was first introduced by Ishikawa for the class of Lip-

schitzian pseudo-contractive operators. Under certain assumptions on the se-
quences {αn} and {βn}, the ishikawa iterative process associated with a Lips-
chitizian pseudocontractive operator converges strongly to a fixed point of T .
The result of Ishikawa is stated as follows:

Theorem 1.1 ([7]). If C is a convex compact subset of a Hilbert space H, T
is a lipschitizian pseudo-contractive map from C into itself and x1 is any point
in C, then the sequence {xn}∞n=1 converges strongly to a fixed point of T , where
xn is defined iteratively for each positive integer n by

xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn],

where {αn}∞n=1, {βn}∞n=1 are sequences of positive numbers satisfy the following
three conditions:

(i) 0 ≤ αn ≤ βn ≤ 1, n ≥ 1;
(ii) limn→∞ βn = 0;
(iii)

∑∞
n=1 αnβn =∞,

In [9, 10], Schu introduced a modified Mann process to approximate fixed
points of asymptotically nonexpansive self-maps defined on nonempty closed
convex and bounded subsets of a Hilbert space H.
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Theorem 1.2 ([9]). Let H be a Hilbert space, C a nonempty closed convex and
bounded subset of H. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} ⊂ [1,∞) for all n ≥ 1, lim kn = 1
and

∑∞
n=1(k2n− 1) <∞. Let {αn}∞n=1 be a real sequence in [0, 1] satisfying the

condition ε ≤ αn ≤ 1− ε for all n ≥ 1 and for some ε > 0. Then the sequence
{xn} generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1,

converges strongly to some fixed point of T .

In [11], Rhoades extended the theorem of Schu to uniformly convex Banach
space using modified Ishikawa iteration scheme. The following are the main
results of [11].

Theorem 1.3 ([11]). Let E be uniformly convex, C a nonempty closed con-
vex and bounded subset of E. Let T : C → C be a completely continuous
asymptotically nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and∑∞

n=1(krn − 1) < ∞, r = max{2, p}; ε ≤ αn ≤ 1 − ε for all n and for some
ε > 0. Choose x0 ∈ C by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0.

Then the sequence {xn} converges strongly to some fixed point of T .

Theorem 1.4. ([11]) Let E be uniformly convex, C a nonempty closed con-
vex and bounded subset of E. Let T : C → C be a completely continuous
asymptotically nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and∑∞

n=1(krn− 1) <∞, r = max{2, p}. Define {αn}, {βn} to satisfy ε ≤ (1−αn),
(1− βn) ≤ 1− ε for all n and for some ε > 0. Define

xn+1 = αnT
nyn + (1− αn)xn;

yn = βnT
nxn + (1− βn)xn.

Then the sequence {xn} converges strongly to a fixed point of T .

The following definitions and results will be used in our main results.

Definition 1.5. A Banach space X is said to be
(i) uniformly convex if there exists a strictly increasing function δ : (0, 2]→

[0, 1] such that for every x, y, p ∈ X, R > 0 and r ∈ [0, 2R], the following
implication holds:

‖x− p‖ ≤ R,
‖y − p‖ ≤ R,
‖x− y‖ ≥ r

⇒
∥∥∥∥x+ y

2
− p
∥∥∥∥ ≤ (1− δ( r

R
))R;
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(ii) strictly convex if for every x, y, p ∈ X and R > 0, the following implica-
tion holds: 

‖x− p‖ ≤ R,
‖y − p‖ ≤ R,
x 6= y

⇒
∥∥∥∥x+ y

2
− p
∥∥∥∥ < R.

Lemma 1.6 ([13]). Let r > 0 be a fixed real number. Then a Banach space
E is uniformly convex if and only if there is a continuous strictly increasing
convex map g : [0,∞) → [0,∞) with g(0) = 0 such that for all x, y ∈ Br[0] =

{x ∈ E : ‖x‖ ≤ r}, ‖λx+ (1− λ)y‖2 ≤ λ ‖x‖2+(1−λ) ‖y‖2−λ(1−λ)g(‖x− y‖)
for all λ ∈ [0, 1].

Lemma 1.7 ([14]). Let g : [0,∞) → [0,∞) with g(0) = 0 be a strictly in-
creasing map. If a sequence {xn} in [0,∞) satisfies limn→∞ g(xn) = 0, then
limn→∞ xn = 0.

Lemma 1.8 ([9]). Let C be a nonempty convex subset of a normed space E. Let
T : C → C be uniformly L-lipschitzian and {αn} and {βn} ∈ [0, 1]. Suppose
{xn} is defined as in (3) and set cn = ‖Tn(xn)− xn‖ for all n ∈ N. Then
‖xn − T (xn)‖ 6 cn + cn−1L(1 + 3L+ 2L2) for all n ∈ N.

Lemma 1.9 ([3]). Let {an} and {bn} be two sequences of nonnegative real
numbers with

∑∞
n=1 bn <∞. If one of the following condition is satisfied:

(i) an+1 ≤ an + bn;n ≥ 1;
(ii) an+1 ≤ (1 + bn)an;n ≥ 1,

then limn→∞ an exists.

2. Main results

Lemma 2.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let T : C → C be an asymptotically nonexpansive map with
sequence kn ⊂ [1,∞) and

∑
n≥1(kn− 1) <∞ with at least one fixed point. Let

αn ⊂ (0, 1). Suppose {xn} is given by (3). Then limn→∞ ‖xn − p‖ exists for
each p ∈ F (T ).

Proof. Let p ∈ F (T ). Then

‖xn+1 − p‖ = ‖αn(Tnyn − p) + (1− αn)(xn − p)‖
≤ αn ‖Tnyn − Tnp‖+ (1− αn) ‖xn − p‖
≤ αnkn ‖yn − p‖+ (1− αn) ‖xn − p‖
= αnkn ‖βn(Tnxn − p) + (1− βn)(xn − p)‖+ (1− αn) ‖xn − p‖
≤ αnβnkn ‖Tnxn − p‖+ αnkn(1− βn) ‖xn − p‖

+ (1− αn) ‖xn − p‖
≤ αnβnk

2
n ‖xn − p‖+ αnkn(1− βn) ‖xn − p‖+ (1− αn) ‖xn − p‖

= ‖xn − p‖
[
αnβnk

2
n + αnkn − αnβnkn + 1− αn

]
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= ‖xn − p‖ [αnβnkn(kn − 1) + αn(kn − 1) + 1]

= ‖xn − p‖ [1 + µn] ,

where µn = αnβnkn(kn − 1) + αn(kn − 1).
Therefore

‖xn+1 − p‖ ≤ ‖xn − p‖ [1 + µn].(4)

Also we deduce that

‖xn+1 − p‖ ≤ ‖x1 − p‖ (1 + µ1)(1 + µ2) · · · (1 + µn) ≤ ‖x1 − p‖ e
∑∞

n=1(µi).

Thus ‖xn − p‖ is bounded and since
∑

n≥1(kn−1) <∞, applying (4) in Lemma

1.9, we conclude that limn→∞ ‖xn − p‖ exists. �

The following lemma is very much useful in proving our results.

Lemma 2.2. Let {an}∞n=1 and {bn}∞n=1 be positive sequences of real numbers
satisfying

(i) {an} is a decreasing sequence,
(ii)

∑
an =∞,

(iii)
∑
anbn <∞.

Then there exists a subsequence {nk} of N such that the sequence {bnk
, bnk+1} =

bn1
, bn1+1, bn2

, bn2+1, . . . , bnk
, bnk+1, . . . converges to zero.

Proof. It is enough to show that given ε > 0 and an positive integer k there
exists nk > k such that bnk

< ε and bnk+1 < ε.
Suppose it is not true then there exist ε > 0 and a positive integer k0 such

that for each n > k0 either bn ≥ ε or bn+1 ≥ ε. Let N1 = {n > k0 : bn ≥ ε}
and N2 = {n > k0 : bn < ε}. Arrange the elements of N1 and N2 in natural
order denoted by ni and mi respectively. Since mi ∈ N2, mi − 1 ∈ N1. From
condition (ii) and by our assumption both N1 and N2 are infinite.

As ni ∈ N1, we have

ε
∑

ank
≤
∑

ank
bnk

<∞

which implies
∑
ank

<∞.
Also ami ≤ ami−1 and mi − 1 ∈ N1, therefore

∞∑
i=1

ami
≤
∞∑
i=1

ami−1 ≤
∞∑
i=1

ani
<∞.

And
∞∑

i=k+1

an =

∞∑
i=k+1

ani
+

∞∑
i=k+1

ami
<∞

a contradiction. Hence the lemma. �
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Lemma 2.3. Let C be a nonempty closed convex subset of a Banach space E.
Let T : C → C be continuous and {xn} be defined in C such that lim

n→∞
‖xn − p‖

exists for each p ∈ F (T ). Suppose there exists a convergent subsequence {xnk
}

such that ‖xnk
− Txnk

‖ → 0 then {xn} converges to a fixed point of T .

Proof. Let {xnk
} be a sequence of {xn} converging to some x ∈ C. As

‖xnk
− Txnk

‖ → 0 and since T is continuous we have Tx = x. As lim
n→∞

‖xn − x‖
exists, we conclude that xn → x. �

Theorem 2.4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let T : C → C be an asymptotically nonexpansive map with
at least one fixed point and the sequence {kn} ≥ 1 be decreasing and satisfy∑

n≥1(k2n − 1) <∞. Let {αn} and {βn} be sequences in [0, 1] satisfying one of
the following conditions:

(A)
∑∞

n=1 αn(1− αn) =∞ and βn ↓ β < 1,
(B)

∑∞
n=1 βn(1− βn) =∞ and αn ↓ α > 0 and βn ↓ β < 1,

(C) 0 ≤ αn ≤ b < 1,
∑∞

n=1 αn =∞ and βn → 0 as n→∞.

Then there exists a subsequence {xnk
} of {xn} such that ‖xnk

− Txnk
‖ → 0.

Proof. For any p ∈ F (T ), we have

‖xn+1 − p‖2

= ‖αn (Tnyn − p) + (1− αn) (xn − p)‖2

≤ αn ‖Tnyn − p‖2 + (1− αn) ‖xn − p‖2 − αn (1− αn) g (‖xn − Tnyn‖)
(using Lemma 1.6)

≤ αnk
2
n ‖yn − p‖

2
+ (1− αn) ‖xn − p‖2 − αn (1− αn) g (‖xn − Tnyn‖)

= αnk
2
n ‖βn(Tnxn − p) + (1− βn)xn − p‖2

+ (1− αn) ‖xn − p‖2 − αn (1− αn) g (‖xn − Tnyn‖)

≤ αnk
2
n

{
βn ‖Tnxn − p‖2 + (1− βn) ‖xn − p‖2 − βn(1− βn)g ‖xn − Tnxn‖

}
+ (1− αn) ‖xn − p‖2 − αn (1− αn) g (‖xn − Tnyn)‖

≤ αnk
2
n

{
βnk

2
n ‖xn − p‖

2
+ (1− βn) ‖xn − p‖2 − βn(1− βn)g (‖xn − Tnxn‖)

}
+ (1− αn) ‖xn − p‖2 − αn(1− αn)g (‖xn − Tnyn‖)

= αnβnk
4
n ‖xn − p‖

2
+ αnk

2
n(1− βn) ‖xn − p‖2

− αnk
2
nβn(1− βn)g(‖xn − Tnxn‖) + (1− αn) ‖xn − p‖2

− αn(1− αn)g(‖xn − Tnyn‖)

= αnβnk
4
n ‖xn − p‖

2
+ αnk

2
n ‖xn − p‖

2 − αnβnk
2
n ‖xn − p‖

2
+ ‖xn − p‖2

− αn ‖xn − p‖2 − αnk
2
nβn(1− βn)g(‖xn − Tnxn‖)
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− αn(1− αn)g(‖xn − Tnyn‖)
and hence

αn(1− αn)g(‖xn − Tnyn‖) + αnk
2
nβn(1− βn)g(‖xn − Tnxn‖)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 +
{
αnβnk

4
n − αnβnk

2
n + αnk

2
n − αn

}
‖xn − p‖2 .

From which we obtain the following inequalities

αn(1− αn)g(‖xn − Tnyn‖)(5)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + {αnβnk
2
n(k2n − 1) + αn(k2n − 1)} ‖xn − p‖2 ,

αnβnk
2
n(1− βn)g(‖xn − Tnxn‖)(6)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + {αnβnk
2
n(k2n − 1) + αn(k2n − 1)} ‖xn − p‖2 .

Case (i). Suppose {αn} and {βn} satisfy (A). Let m ≥ 1 then from (5),
m∑

n=1

αn(1− αn)g(‖xn − Tnyn‖)

≤
m∑

n=1

(‖xn − p‖2 − ‖xn+1 − p‖2)

+

m∑
n=1

‖xn − p‖2
{
αnβnk

2
n(k2n − 1) + αn(k2n − 1)

}
=

m∑
n=1

(
‖xn − p‖2 − ‖xn+1 − p‖2

)
+ αnβnk

2
n

m∑
n=1

‖xn − p‖2
(
k2n − 1

)
+

m∑
n=1

‖xn − p‖2 αn

(
k2n − 1

)
= ‖x1 − p‖2 − ‖xm+1 − p‖2

+ αnβnk
2
n

m∑
n=1

‖xn − p‖2
(
k2n − 1

)
+ αn

m∑
n=1

‖xn − p‖2
(
k2n − 1

)
.

Since {‖xn − p‖} is bounded, allowing m→∞ we have
∞∑

n=1

αn(1− αn)g (‖xn − Tnyn‖) <∞.

Let cn = ‖xn − Tnxn‖ and dn = ‖xn − Tnyn‖ . Put an = αn (1− αn) and
bn = g(‖xn − Tnyn‖), then from Lemma 2.2, {g(dnk

), g(dnk+1
)} converges to

zero. Again from Lemma 1.7, {dnk
, dnk+1

} converges to zero.
Since

‖xn − Tnxn‖ = ‖xn − Tnyn − Tnxn + Tnyn‖
≤ ‖xn − Tnyn‖+ ‖Tnxn − Tnyn‖
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≤ ‖xn − Tnyn‖+ kn ‖xn − yn‖
= ‖xn − Tnyn‖+ kn ‖xn − βnTnxn − xn + βnxn‖
= ‖xn − Tnyn‖+ knβn ‖xn − Tnxn‖ ,
(1− knβn) cn ≤ dn.

Since βn ↓ β < 1, and kn ↓ 1 the sequence cn converges to zero whenever dn
converges to zero. Hence we conclude that {cnk

, cnk+1} converges to zero.
Case (ii). Let αn and βn satisfy (B). Then from (6),

m∑
n=1

αnβnk
2
n (1− βn) g (‖xn − Tnxn‖)

≤
m∑

n=1

(‖xn − p‖2 − ‖xn+1 − p‖2)

+

m∑
n=1

‖xn − p‖2
{
αnβnk

2
n

(
k2n − 1

)
+ αn

(
k2n − 1

)}
= ‖x1 − p‖2 − ‖xm+1 − p‖2

+

m∑
n=1

‖xn − p‖2 αnβnk
2
n

(
k2n − 1

)
+

m∑
n=1

‖xn − p‖2 αn

(
k2n − 1

)
.

Letting m→∞, as in Case (i) we have

∞∑
n=1

αnβnk
2
n (1− βn) g (‖xn − Tnxn‖) <∞.

Since αn ↓ α > 0 and βn ↓ β < 1. From condition (B) we have

∞∑
n=1

αnβnk
2
n (1− βn) =∞.

Put cn = ‖xn − Tnxn‖ then from Lemma 2.2, {cnk
, cnk+1} converges to zero.

Case (iii). Let αn and βn satisfy (C).
Using the condition 0 ≤ αn ≤ b < 1 in (5),

αn(1− b)g(‖xn − Tn(yn)‖)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖xn − p‖2
{
αnβnk

2
n(k2n − 1) + αn(k2n − 1)

}
.

Summing the first m terms,

m∑
n=1

αn(1− b)g(‖xn − Tnyn‖)

≤
m∑

n=1

(‖xn−p‖2−‖xn+1−p‖2)+

m∑
n=1

‖xn − p‖2
{
αnβnk

2
n(k2n − 1)+αn(k2n − 1)

}
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= ‖x1 − p‖2− ‖xm+1 − p‖2+

m∑
n=1

‖xn− p‖2
{
αnβnk

2
n(k2n − 1) + αn(k2n − 1)

}
.

Since {‖xn − p‖} is bounded, allowing m→∞ we have
∞∑

n=1

αn(1− b)g(‖xn − Tnyn‖) <∞.

Let dn = ‖xn − Tnyn‖, cn = ‖xn − Tnxn‖. Proceeding as in Case (i), we
conclude that {cnk

, cnk+1} converges to zero.
In all the three cases we have proved that {cnk

, cnk+1} converges to zero. Ap-
plying in Lemma 1.8, we obtain a subsequence {xnk

} such that ‖xnk
− Txnk

‖ =
0 and this completes the proof of the theorem. �

Theorem 2.5. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and

∑∞
n=1(k2n −

1) <∞. Let {αn}, {βn} be sequences satisfying anyone of the conditions (A),
(B) and (C) in Theorem 2.4. Define

xn+1 = αnT
nyn + (1− αn)xn,

yn = βnT
nxn + (1− βn)xn.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Define {xn} as above, then by Theorem 2.4 and since T is completely
continuous, we can find a subsequence {xnk

} of {xn} such that xnk
→ x and

x = Tx. But limn→∞ ‖xn−p‖ exists whenever p is a fixed point of T . Therefore
xn → x. �

Corollary 2.6. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and

∑∞
n=1(k2n −

1) <∞ and
∑∞

n=1 αn(1− αn) =∞. Suppose

xn+1 = αnT
nxn + (1− αn)xn.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Put βn = 0 in condition (A). �

Corollary 2.7. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and

∑∞
n=1(k2n −

1) <∞. Suppose

xn+1 =
1

n
Tnxn + (1− 1

n
)xn.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Put αn = 1
n and βn = 0 in condition (A). �
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Corollary 2.8. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and

∑∞
n=1(k2n −

1) <∞. Suppose

xn+1 = (1− 1

n
)Tnyn +

1

n
xn,

yn =
1

n
Tnxn + (1− 1

n
)xn.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Put αn = 1− 1
n and βn = 1

n either in (A) or (B) or (C). �

Corollary 2.9. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and

∑∞
n=1(k2n −

1) <∞. Suppose

xn+1 =
1

n
Tnyn + (1− 1

n
)xn,

yn =
1

n
Tnxn + (1− 1

n
)xn.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Put αn = 1
n and βn = 1

n in condition (A). �

Corollary 2.10. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and

∑∞
n=1(k2n −

1) <∞. Suppose

xn+1 = (1− 1

n+ 1
)Tnxn +

1

n+ 1
xn.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Put αn = 1− 1
n+1 and βn = 0 in condition (A). �

Corollary 2.11. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a completely continuous asymptotically
nonexpansive mapping with sequence {kn} satisfying kn ≥ 1 and

∑∞
n=1(k2n −

1) <∞. Suppose

xn+1 = Tnyn,

yn =
1

n
Tnxn + (1− 1

n
)xn.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. Put αn = 1 and βn = 1
n in condition (B). �
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Example 2.12. Let E = R2 be the euclidean space and let C = B[0 : 9/10] ⊆
R2 where B[0 : 9/10] is the closed ball centered at 0 with radius 9/10. Define
T : C → C by

T (x1, x2) = (x21, sinx2).

Here Tn(x1, x2) = (x2n1 , sin(n) x2) where sin(n) x2 is the composition of sine
function over n times at x2.

Consider (x1, x2) and (y1, y2) in C

‖Tn(x1, x2)− Tn(y1, y2)‖ =
∥∥∥(x2n1 , sin(n) x2)− (y2n1 , sin(n)y2)

∥∥∥
2

=

((
x2n1 − y2n1

)2
+
(

sin(n) x2 − sin(n) y2

)2)1/2

.

Let x1 < y1, then

(x2n1 − y2n1 ) = (x1 − y1)(x2n−11 + y1x
2n−2
1 + y21x

2n−3
1 + · · ·+ x1y

2n−2
1 + y2n−11 )

≤ (x1 − y1)2ny2n−11 .

By mean value theorem we have | sin(sinx2)− sin(sin y2)| ≤ | sinx2 − sin y2| ≤
|x2 − y2|. Inductively for each n ∈ N

| sin(n) x2 − sin(n) y2| ≤| x2 − y2 | .
Thus

‖Tn(x1, x2)− Tn(y1, y2)‖ =
(

(x1 − y1)
2

4n2y
2(2n−1)
1 + (x2 − y2)

2
)1/2

.

Since 4n2y
2(2n−1)
1 < 1 for sufficiently large n it follows that T is asymptotically

nonexpansive. But T is not non expansive for

‖T (0.8, 0)− T (0.7, 0)‖ = ‖(0.64, 0)− (0.49, 0)‖ = 0.15 > ‖(0.8, 0)− (0.7, 0)‖.
Let x1 = (x11 , x12) ∈ C and suppose xn = (xn1

, xn2
) is defined as in Corollary

2.10 by

xn+1 =

(
xn1

+ nx2nn1

n+ 1
,
xn2

+ sin(n)xn2

n+ 1

)
.

Then {xn} converges to the fixed point (0, 0).

3. Rate of convergence

In this section, we present a convergence result for modified Mann’s iterative
sequences which establishes that for a certain class of operators the iteration
defined in Corollary 2.10, converges faster than the usual modified Mann’s
iteration.

Definition 3.1 ([1]). An operator T is called a Zamfirescu operator if there
exist real numbers α, β and γ, 0 ≤ α < 1, 0 ≤ β, γ < 0.5, such that for any
x, y ∈ E at least one of the following conditions hold:

(a) ‖Tx− Ty‖ ≤ α ‖x− y‖,
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(b) ‖Tx− Ty‖ ≤ β[‖x− Tx‖+ ‖y − Ty‖],
(c) ‖Tx− Ty‖ ≤ γ[‖x− Ty‖+ ‖y − Tx‖].

Definition 3.2. Let {an}∞n=0 and {bn}∞n=0 be two positive real sequences con-
verging to 0. We say {an}∞n=0 converges faster than {bn}∞n=0 if

lim
n→∞

an
bn

= 0.

Theorem 3.3. Let E be uniformly convex, C a nonempty closed convex and
bounded subset of E. Let T : C → C be a Zamfirescu operator. Let x1 = y1 =
a ∈ C. Suppose we define the sequences {xn}∞n=1 and {yn}∞n=1 by

xn+1 = (1− 1

n+ 1
)Tnxn +

1

n+ 1
xn,(7)

yn+1 = αnT
nyn + (1− αn)yn, ε ≤ αn ≤ 1− ε,(8)

where {yn}∞n=1 is the usual modified Mann’s iteration. Then both {xn} and
{yn} converge to the unique fixed point p of T and {xn} converges faster to p
than {yn}.

Proof. It is known from Theorem 2.4 of [1] that any Zamfirescu operator possess
a unique fixed point and satisfies

(9) ‖Tx− Ty‖ ≤ δ.‖x− y‖+ 2δ.‖x− Tx‖

for all x,y ∈ C, where

δ = max{α, β

1− β
,

γ

1− γ
} < 1.

Let yn be the sequence defined by (8). Take y = yn and x = p in (9), then

(10) ‖Tyn − p‖ ≤ δ.‖yn − p‖

and thus

(11) ‖Tnyn − p‖ ≤ δ.‖Tn−1yn − p‖ ≤ δ2.‖Tn−2yn − p‖ ≤ · · · ≤ δn‖yn − p‖.

From (11), we obtain

‖yn+1 − p‖ = ‖αnT
nyn + (1− αn)yn − p‖

≤ αn‖Tnyn − p‖+ (1− αn)‖yn − p‖
≤ αnδ

n‖yn − p‖+ (1− αn)‖yn − p‖
≤ (1− αn + αnδ

n)‖yn − p‖,

which implies that

(12) ‖yn+1 − p‖ ≤
n∏

k=1

(1− αk + αkδ
k)‖y1 − p‖.
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Similarly for the sequence xn defined by (7), we obtain

(13) ‖xn+1 − p‖ ≤
n∏

k=1

(
1

k + 1
+

(
1− 1

k + 1

)
δk
)
‖x1 − p‖.

Let an =
∏n

k=1

(
1

k+1 +
(

1− 1
k+1

)
δk
)

and bn =
∏n

k=1(1 − αk + αkδ
k). Since

x1 = y1 = a, it is enough to show that limn→∞
an

bn
= 0. Let cn = an

bn
, then

applying ratio test we see that

cn+1

cn
=

(
1

n+2 +
(

1− 1
n+2

)
δn+1

)
(1− αn+1 + αn+1δn+1)

.

Since ε ≤ (1−αn+1) ≤ 1−ε and δn → 0, we get limn→∞
cn+1

cn
= 0 and therefore

we conclude that
∑∞

n=1 cn converges which implies limn→∞
an

bn
= 0. �
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