• Title/Summary/Keyword: p-ideal

Search Result 726, Processing Time 0.028 seconds

ON INJECTIVITY AND P-INJECTIVITY

  • Xiao Guangshi;Tong Wenting
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.299-307
    • /
    • 2006
  • The following results ale extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $_R(M/Z(M))$ is projective, where Z(M) is the left singular submodule of $_{R}M$; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is Y J-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.

ON STRONGLY REGULAR NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • In this paper we introduce the notion of strongly regular near-subtraction semigroups (right). We have shown that a near-subtraction semigroup X is strongly regular if and only if it is regular and without non zero nilpotent elements. We have also shown that in a strongly regular near-subtraction semigroup X, the following holds: (i) Xa is an ideal for every a $\in$ X (ii) If P is a prime ideal of X, then there exists no proper k-ideal M such that P $\subset$ M (iii) Every ideal I of X fulfills $I=I^2$.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.

SOME FAMILIES OF IDEAL-HOMOGENEOUS POSETS

  • Chae, Gab-Byung;Cheong, Minseok;Kim, Sang-Mok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.971-983
    • /
    • 2016
  • A partially ordered set P is ideal-homogeneous provided that for any ideals I and J, if $$I{\sim_=}_{\sigma}J$$, then there exists an automorphism ${\sigma}^*$ such that ${\sigma}^*{\mid}_I={\sigma}$. Behrendt [1] characterizes the ideal-homogeneous partially ordered sets of height 1. In this paper, we characterize the ideal-homogeneous partially ordered sets of height 2 and nd some families of ideal-homogeneous partially ordered sets.

Identities in a Prime Ideal of a Ring Involving Generalized Derivations

  • ur Rehman, Nadeem;Ali Alnoghashi, Hafedh Mohsen;Boua, Abdelkarim
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.727-735
    • /
    • 2021
  • In this paper, we will study the structure of the quotient ring R/P of an arbitrary ring R by a prime ideal P. We do so using differential identities involving generalized derivations of R. We enrich our results with examples that show the necessity of their assumptions.

Commutativity Criteria for a Factor Ring R/P Arising from P-Centralizers

  • Lahcen Oukhtite;Karim Bouchannafa;My Abdallah Idrissi
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.551-560
    • /
    • 2023
  • In this paper we consider a more general class of centralizers called I-centralizers. More precisely, given a prime ideal P of an arbitrary ring R we establish a connection between certain algebraic identities involving a pair of P-left centralizers and the structure of the factor ring R/P.

SPECTRAL LOCALIZING SYSTEMS THAT ARE t-SPLITTING MULTIPLICATIVE SETS OF IDEALS

  • Chang, Gyu-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.863-872
    • /
    • 2007
  • Let D be an integral domain with quotient field K, A a nonempty set of height-one maximal t-ideals of D, F$({\Lambda})={I{\subseteq}D|I$ is an ideal of D such that $I{\subseteq}P$ for all $P{\in}A}$, and $D_F({\Lambda})={x{\in}K|xA{\subseteq}D$ for some $A{\in}F({\Lambda})}$. In this paper, we prove that if each $P{\in}A$ is the radical of a finite type v-ideal (resp., a principal ideal), then $D_{F({\Lambda})}$ is a weakly Krull domain (resp., generalized weakly factorial domain) if and only if the intersection $D_{F({\Lambda})}={\cap}_{P{\in}A}D_P$ has finite character, if and only if $F({\Lambda})$ is a t-splitting set of ideals, if and only if $F({\Lambda})$ is v-finite.