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Abstract. In this paper, we will study the structure of the quotient ring R/P of an

arbitrary ring R by a prime ideal P . We do so using differential identities involving

generalized derivations of R. We enrich our results with examples that show the necessity

of their assumptions.

1. Introduction

Throughout this article, R will represent an associative ring. Recall that a
proper ideal P of R is said to be prime if for any x, y ∈ R, xRy ⊆ P implies that
x ∈ P or y ∈ P. Therefore, R is called a prime ring if and only if (0) is the prime
ideal of R. R is called a semiprime ring if for any x, y ∈ R, xRx = (0) implies that
x = 0. For any x, y ∈ R, the symbol [x, y] will denote the commutator xy − yx,
while the symbol x◦y will stand for the anticommutator xy+yx. A map d : R → R
is a derivation of a ring R if d is additive and satisfies d(xy) = d(x)y+ xd(y) for all
x, y ∈ R. A map F : R → R is a generalized derivation of a ring R with d if F is
additive and satisfies F (xy) = F (x)y + xd(y) for all x, y ∈ R. A map F : R → R is
a multiplier of a ring R if F is additive and satisfies F (xy) = F (x)y = xF (y) for all
x, y ∈ R. During the last two decades, many authors have studied commutativity
of prime and semi-prime rings admitting suitably constrained additive mappings
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acting on appropriate subsets of the rings. Moreover, many of obtained results
extend other ones proven previously just for the action of the considered mapping
on the entire ring. In this direction, the recent literature contains numerous results
on commutativity in prime and semi-prime rings admitting constrained additive
mappings, automorphisms, derivations, skew derivations and generalized derivations
acting on appropriate subsets of the rings, see [1], [3], [4], [5], [7] and [8].

In the present paper, we adopt a new study, which is an extension and also
a generalization of recent results existing in the literature. Precisely, we consider
differential identities, in a prime ideal of an arbitrary ring, involving generalized
derivation without primeness assumptions on the considered ring.

2. Main Result

We first indicate the following lemmas which are essential for developing our
paper.

Lemma 2.1. ([7, Proposition 1.3]) Let R be a ring, P is a prime ideal of R. If R
admits a generalized derivation F with associated derivation d satisfying [x, F (x)] ∈
P for all x ∈ R, then either R/P is a commutative integral domain or d(R) ⊆ P .

Lemma 2.2. ([7, Lemma 1.3]) Let R be a ring and P be a prime ideal of R, If

(i) [x, y] ∈ P

(ii) x ◦ y ∈ P

for all x, y ∈ R, then R/P is a commutative integral domain.

The following result is a generalization of [5, Lemma 1].

Theorem 2.3. Let R be a ring, P be a prime ideal of R. If R admits general-

ized derivations F and G with associated derivations d and g respectively satisfying

F (x)x ± xG(x) ∈ P for all x ∈ R, then either g(R) ⊆ P or R/P is a commutative

integral domain.

Proof. Assume that

F (x)x− xG(x) ∈ P(2.1)

for all x ∈ R. By linearizing (2.1), we have

F (x)y + F (y)x− xG(y) − yG(x) ∈ P(2.2)

for all x, y ∈ R. Replacing y by yx in (2.2), we get

F (x)yx+ F (y)x2 + yd(x)x− xG(y)x − xyg(x) − yxG(x) ∈ P(2.3)

for all x, y ∈ R. Right multiplying (2.2) by x, we obtain

F (x)yx + F (y)x2 − xG(y)x − yG(x)x ∈ P(2.4)
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for all x, y ∈ R. Subtracting (2.4) from (2.3), this gives

yd(x)x − xyg(x)− yxG(x) + yG(x)x ∈ P(2.5)

for all x, y ∈ R. Putting ry instead of y in (2.5), where r ∈ R, we have

ryd(x)x − xryg(x) − ryxG(x) + ryG(x)x ∈ P(2.6)

for all x, y, r ∈ R. Left multiplying (2.5) by x, we get

ryd(x)x − rxyg(x) − ryxG(x) + ryG(x)x ∈ P(2.7)

for all x, y, r ∈ R. Comparing (2.6) and (2.7), we obtain [x, r]yg(x) ∈ P that is
[x, r]Rg(x) ⊆ P. Since P is a prime ideal of R, we get [x, r] ∈ P or g(x) ∈ P, which
implies that I = {x ∈ R | [x, r] ∈ P} and J = {x ∈ R | g(x) ∈ P}. But a group
cannot be written as the union of two of its proper subgroups then I = R in which
case R/P is a commutative integral domain by lemma 2.2(i) or J = R in this case
g(R) ⊆ P . This completes the proof of the Theorem.
Suppose that F (x)x+xG(x) ∈ P for all x, y ∈ R, then using the similar arguments
as in the above with suitable slight modification, we get the required result.

Corollary 2.4. ([5, Lemma1]) Let R be a ring, P be a prime ideal of R and d and

g are derivations. If d(x)x±xg(x) ∈ P for all x ∈ R, then either g(R) ⊆ P or R/P
is a commutative integral domain.

The following result extends [5, Theorem 1 (2)] to its full generalization.

Theorem 2.5. Let R be a ring and P be a prime ideal of R. If R admits general-

ized derivations F and G with associated derivations d and g respectively satisfying

F (x)G(y)± [x, y] ∈ P for all x, y ∈ R, then R/P is a commutative integral domain.

Proof. By our hypothesis, we have

F (x)G(y) + [x, y] ∈ P(2.8)

for all x, y ∈ R. Replacing y by yt in (2.8) and using it, where t ∈ R, we have

F (x)yg(t) + y[x, t] ∈ P(2.9)

for all x, y, t ∈ R. Putting t = x in (2.9), we get F (x)yg(x) ∈ P, that is F (x)Rg(x) ⊆
P. Since P is a prime ideal of R, then F (x) ∈ P or g(x) ∈ P, which implies that
I = {x ∈ R | F (x) ∈ P} and J = {x ∈ R | g(x) ∈ P}. Since a group cannot be
the union of its two proper subgroups (abbreviated as Brauer’s Trick) either I = R
or J = R. If I = R then F (R) ⊆ P and by using last relation in (2.8), we obtain
[x, y] ∈ P this implies that R/P is a commutative integral domain. If J = R, then

g(R) ⊆ P.(2.10)
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By using (2.10) in (2.9), gives y[x, t] ∈ P and since P 6= R, then [x, t] ∈ P, this
implies that R/P is a commutative integral domain.

Assuming that F (x)G(y) − [x, y] ∈ P for any x, y ∈ R, we can obtain the required
result using the same procedures as above with the appropriate changes.

The following Corollary is an immediate consequence of our previous result:

Corollary 2.6. ([5, Theorem 1 (2)]) Let R be a ring and P be a prime ideal of R
and d and g are derivations. If d(x)g(y) ± [x, y] ∈ P for all x, y ∈ R, then R/P is

a commutative integral domain.

Using the same technique as used in the proof of Theorem 2.5 with necessary
variations we get the following result.

Theorem 2.7. Let R be a ring and P be a prime ideal of R. If R admits general-

ized derivations F and G with associated derivations d and g respectively satisfying

F (x)G(y)± x ◦ y ∈ P for all x, y ∈ R, then R/P is a commutative integral domain.

A very immediate corollary of Theorem 2.7 is the following result.

Corollary 2.8. Let R be a ring and P be a prime ideal of R and d and g are

derivations. If d(x)g(y) ± x ◦ y ∈ P for all x, y ∈ R, then R/P is a commutative

integral domain.

In [2, Theorem 3], Bell and Kappe proved that d = 0 on R if d is a derivation of
a prime ring R which acts as homomorphism or anti-homomorphism on a nonzero
right ideal of R. Moreover, the first author [6] established this result for generalized
derivations of prime rings. He obtained that R must be commutative if R is a 2-
torsion free prime ring and F acts as a homomorphism or an anti-homomorphism
on a nonzero ideal of R. Recently, in [4, Theorem 4] A. Mamouni et al. studied
the behaviour of prime ideal without making any assumption with derivation d
satisfying the identities d(xy)−d(x)g(y) ∈ P for all x, y ∈ R or d(xy)−d(y)g(x) ∈ P
for all x, y ∈ R, where P is a prime ideal. Our work is then motivated by the previous
results. Our objective is to generalize the mentioned result above by replacing
the derivation with generalized derivation. Explicitly we shall prove the following
theorems:

Theorem 2.9. Let R be a ring and P be a prime ideal of R. If R admits general-

ized derivations F and G with associated derivations d and g respectively satisfying

F (xy) ± F (x)G(y) ∈ P for all x, y ∈ R, then d(R) ⊆ P or R/P is a commutative

integral domain.

Proof. Assume that

F (xy) + F (x)G(y) ∈ P(2.11)
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for all x, y ∈ R. Replacing y by yr in (2.11) and using it, where r ∈ R, we have

xyd(r) + F (x)yg(r) ∈ P(2.12)

for all x, y, r ∈ R. Writing F (x)y instead of y in (2.12), we get

xF (x)yd(r) + F (x)2yg(r) ∈ P(2.13)

for all x, y, r ∈ R. Left multiplying (2.12) by F (x), we obtain

F (x)xyd(r) + F (x)2yg(r) ∈ P(2.14)

for all x, y, r ∈ R. Subtracting (2.13) from (2.14), we have

[F (x), x]yd(r) ∈ P(2.15)

for all x, y, r ∈ R, that is [F (x), x]Rd(r) ⊆ P. Then [F (x), x] ∈ P or d(r) ∈ P. In
case [F (x), x] ∈ P, by lemma 2.1, then either d(R) ⊆ P or R/P is a commutative
integral domain. On the other case d(R) ⊆ P .

Assuming that F (xy) − F (x)G(y) ∈ P for all x, y ∈ R, then using the same tech-
niques as used above with necessary variations we get the required result.

Corollary 2.10. ([4, Theorem 4 (1)]) Let R be a ring and P be a prime ideal of R
and d and g are derivations. If d(xy) ± d(x)g(y) ∈ P for all x, y ∈ R, then either

d(R) ⊆ P or R/P is a commutative integral domain.

Theorem 2.11. Let R be a ring and P be a prime ideal of R. If R admits general-

ized derivations F and G with associated derivations d and g respectively satisfying

F (xy)± F (y)G(x) ∈ P for all x, y ∈ R, then either R/P is a commutative integral

domain or d(R) ⊆ P .

Proof. Assume that

F (xy) + F (y)G(x) ∈ P(2.16)

for all x, y ∈ R. Replacing x by xy in (2.16) and using it, we have

xyd(y) + F (y)xg(y) ∈ P(2.17)

for all x, y ∈ R. Writing tx instead of x in (2.17), we get

txyd(y) + F (y)txg(y) ∈ P(2.18)

for all x, y, t ∈ R. Left multiplying (2.17) by t, where t ∈ R, we obtain

txyd(y) + tF (y)xg(y) ∈ P(2.19)
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for all x, y, t ∈ R. Comparing (2.18) and (2.19), this gives [F (y), t]xg(y) ∈ P that is
[F (y), t]Rg(y) ⊆ P. Since P is a prime ideal of R, we get [F (y), t] ∈ P or g(y) ∈ P,
which implies that I = {y ∈ R | [F (y), R] ⊆ P} and J = {y ∈ R | g(y) ∈ P}. Since
R = I ∪ J , and using again Brauer’s Trick, one has that either R = I or R = J .
If R = I, then by lemma 2.1, either d(R) ⊆ P or R/P is a commutative integral
domain. On the other hand of J = R, then

g(R) ⊆ P.(2.20)

By using (2.20) in (2.17), we have xyd(y) ∈ P and since P 6= R, we obtain

yd(y) ∈ P(2.21)

for all y ∈ R. By linearizing (2.21), we get

xd(y) + yd(x) ∈ P(2.22)

for all x, y ∈ R. Putting ry instead of y in (2.22), where r ∈ R, we obtain

xd(r)y + xrd(y) + ryd(x) ∈ P(2.23)

for all x, y, r ∈ R. Left multiplying (2.22) by r, where r ∈ R, we have

rxd(y) + ryd(x) ∈ P(2.24)

for all x, y, r ∈ R. Subtracting (2.24) from (2.23), we get xd(r)y + [x, r]d(y) ∈
P. Replacing x by wx in the previous relation, one gets [w, r]xd(y) ∈ P for all
x, y, w, r ∈ R. From this, we easily get either R/P is a commutative integral
domain or d(R) ⊆ P .

If we have F (xy) − F (y)G(x) ∈ P for all x, y ∈ p, then arguing as above, we
conclude that either R/P is a commutative integral domain or d(R) ⊆ P .

Corollary 2.12. ([4, Theorem 4 (2)]) Let R be a ring and P be a prime ideal of R
and d and g are derivations. If d(xy) ± d(y)g(x) ∈ P for all x, y ∈ R, then either

d(R) ⊆ P or R/P is a commutative integral domain.

Theorem 2.13. Let R be a ring and P be a prime ideal of R. If R admits gen-

eralized derivations F and G with associated derivations d and g respectively. If

G(xy)± F (x)F (y) ∈ P for all x, y ∈ R, then d(R) ⊆ P and g(R) ⊆ P.

Proof. Assume that

G(xy) + F (x)F (y) ∈ P(2.25)

for all x, y ∈ R. Replacing y by yr in (2.25) and using it, we have

xyg(r) + F (x)yd(r) ∈ P(2.26)
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for all x, y ∈ R. Now, replacing x by zx in (2.26) we find that

zxyg(r) + F (z)xyd(r) + zd(x)yd(r)) ∈ P(2.27)

for all x, y, z, r ∈ R. Letting x = z in (2.26) we get

zyg(r) + F (z)yd(r) ∈ P(2.28)

for all , y, z, r ∈ R. Again replace y by xy in (2.28), to get

zxyg(r) + F (z)xyd(r) ∈ P.(2.29)

By using comparing (2.29) in (2.27), we get zd(x)yd(r) ∈ P for all x, y, z, r ∈ R,
that is Rd(x)Rd(r) ⊆ P. Hence

d(R) ⊆ P.(2.30)

By using (2.30) in (2.29), we have zxyg(r) ∈ P and so

g(R) ⊆ P.(2.31)

Now if G(xy) − F (x)F (y) ∈ P for all x, y ∈ R, with a slight modification, we get
the required result.

Corollary 2.14. Let R be a ring and P be a prime ideal of R and d and g are

derivations. If g(xy)± d(x)d(y) ∈ P for all x, y ∈ R, then d(R) ⊆ P and g(R) ⊆ P

Theorem 2.15. Let R be a ring and P be a prime ideal of R. If R admits general-

ized derivations F and G with associated derivations d and g respectively satisfying

G(xy)± F (y)F (x) ∈ P for all x, y ∈ R, then either R/P is a commutative integral

domain or d(R) ⊆ P .

Proof. Assume that

G(xy) + F (y)F (x) ∈ P(2.32)

for all x, y ∈ R. Replacing x by xy in (2.32) and using it, we have

xyg(y) + F (y)xd(y) ∈ P(2.33)

for all x, y ∈ R. Writing tx instead of x in (2.33), we get

txyg(y) + F (y)txd(y) ∈ P(2.34)

for all x, y, t ∈ R. Left multiplying (2.33) by t, where t ∈ R, we obtain

txyg(y) + tF (y)xd(y) ∈ P(2.35)
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for all x, y, t ∈ R. Comparing (2.34) and (2.35), gives [F (y), t]xd(y) ∈ P that is
[F (y), t]Rd(y) ⊆ P. Since P is a prime ideal of R, we get [F (y), t] ∈ P or d(y) ∈ P,
which implies that I = {y ∈ R | [F (y), R] ⊆ P} and J = {y ∈ R | d(y) ∈ P}. Then
I and J are additive subgroups of R whose union is R and using Brauer’s Trick,
we have either I = R, or R = J . In case I = R, by lemma 2.1, either d(R) ⊆ P or
R/P is a commutative integral domain. In case J = R, d(R) ⊆ P .

Now if we consider G(xy)−F (y)F (x) ∈ P for all x, y ∈ R then the same reasoning
proves that either R/P is a commutative integral domain or d(R) ⊆ P .

Corollary 2.16. Let R be a ring and P be a prime ideal of R and d and g are

derivations. If g(xy)± d(y)d(x) ∈ P for all x, y ∈ R, then either d(R) ⊆ P or R/P
is a commutative integral domain.

The following examples show that the condition ”primeness of P” in all Theo-
rems cannot be omitted.

Example 2.17. Consider the ring R = {





0 a b
0 0 2c
0 0 0



 : a, b, c ∈ Z4}. Let

P = {





0 0 0
0 0 0
0 0 0



} be an ideal of R and F = G, d = g : R → R defined by

F





0 a b
0 0 2c
0 0 0



 =





0 2a 0
0 0 0
0 0 0



 with d





0 a b
0 0 2c
0 0 0



 =





0 0 c
0 0 0
0 0 0



 be general-

ized derivations. We see that F (x)x − xG(x) ∈ P , F (x)x + xG(x) ∈ P, F (xy) −
F (x)G(y) ∈ P, F (xy)+F (x)G(y) ∈ P, F (xy)−F (y)G(x) ∈ P, F (xy)+F (y)G(x) ∈
P, G(xy) − F (x)F (y) ∈ P, G(xy) + F (x)F (y) ∈ P, G(xy) − F (y)F (x) ∈ P and
G(xy) + F (y)F (x) ∈ P. But d(R) 6⊆ P and R/P is noncommutative. Also we

see that P is not prime ideal of R because





0 1 0
0 0 0
0 0 0



R





0 1 0
0 0 0
0 0 0



 ⊆ P, but





0 1 0
0 0 0
0 0 0



 6∈ P.

Example 2.18. Consider S be a ring such that s2 = 0 for all s ∈ S, but the
product of some elements of S is nonzero. Since s2 = 0, so (s + t)2 = 0 for all

s, t ∈ S this implies that s ◦ t = 0 for all s, t ∈ S. Suppose R = {

(

x y
0 x

)

:

x, y ∈ S}. Define F = G = d = g : R → R as F

(

x y
0 x

)

=

(

0 y
0 0

)

, clearly F

and d are (generalized) derivations. Let P = {

(

0 3y
0 0

)

: y ∈ S}. We see that
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(

0 y
0 0

)

R

(

3x 0
0 3x

)

⊆ P, but

(

0 y
0 0

)

,

(

3x 0
0 3x

)

6∈ P so P is not prime ideal of

R. Also we see that F (x)G(y) + x ◦ y ∈ P and F (x)G(y)− x ◦ y ∈ P, but d(R) 6⊆ P
and R/P is noncommutative.
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