• Title/Summary/Keyword: p-channel gate

Search Result 181, Processing Time 0.03 seconds

Gate length scaling behavior and improved frequency characteristics of In0.8Ga0.2As high-electron-mobility transistor, a core device for sensor and communication applications (센서 및 통신 응용 핵심 소재 In0.8Ga0.2As HEMT 소자의 게이트 길이 스케일링 및 주파수 특성 개선 연구)

  • Jo, Hyeon-Bhin;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.436-440
    • /
    • 2021
  • The impact of the gate length (Lg) on the DC and high-frequency characteristics of indium-rich In0.8Ga0.2As channel high-electron mobility transistors (HEMTs) on a 3-inch InP substrate was inverstigated. HEMTs with a source-to-drain spacing (LSD) of 0.8 ㎛ with different values of Lg ranging from 1 ㎛ to 19 nm were fabricated, and their DC and RF responses were measured and analyzed in detail. In addition, a T-shaped gate with a gate stem height as high as 200 nm was utilized to minimize the parasitic gate capacitance during device fabrication. The threshold voltage (VT) roll-off behavior against Lg was observed clearly, and the maximum transconductance (gm_max) improved as Lg scaled down to 19 nm. In particular, the device with an Lg of 19 nm with an LSD of 0.8 mm exhibited an excellent combination of DC and RF characteristics, such as a gm_max of 2.5 mS/㎛, On resistance (RON) of 261 Ω·㎛, current-gain cutoff frequency (fT) of 738 GHz, and maximum oscillation frequency (fmax) of 492 GHz. The results indicate that the reduction of Lg to 19 nm improves the DC and RF characteristics of InGaAs HEMTs, and a possible increase in the parasitic capacitance component, associated with T-shap, remains negligible in the device architecture.

Advanced P-Channel Poly-Si TFTs for SOG

  • Park, Seong-Jin;Kang, Sang-Hoon;Ku, Yu-Mi;Choi, Jong-Hyun;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1019-1022
    • /
    • 2004
  • High performance p-ch poly-Si TFTs with excellent stability were developed. By using a frequency doubled DPSS CW laser, the a-Si on glass could be crystallized into one dimensional single crystalline silicon named as a sequential lateral crystallization (SLC) region. We fabricated p-ch TFTs on SLC region and the typical characteristic values of the TFTs were $u_{fe}$ = 180 $cm^2$/Vs, $V_{th}$ = -3 V, S.S. = 0.5 V/dec, and $I_{off}$ = 1 pA/um@ $V_d$ = -10V. It is found that the TFTs are very stable after bias stresses such as negative and positive gate biases, hot carrier bias and high current bias. These results indicate that the poly-Si in SLC region is suitable for system on glass (SOG) application.

  • PDF

Hysteresis Characteristics in Low Temperature Poly-Si Thin Film Transistors

  • Chung, Hoon-Ju;Kim, Dae-Hwan;Kim, Byeong-Koo
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.6-10
    • /
    • 2005
  • The dependence of hysteresis characteristics in low temperature poly-Si (LTPS) thin film transistors (TFTs) on the gate-source voltage (Vgs) or the drain-source voltage (Vds) bias is investigated and discussed. The hysteresis levels in both p-type and n-type LTPS TFTs are independent of Vds bias but increase as the sweep range of Vgs increases. It has been found that the hysteresis in both p-type and n-type LTPS TFTs originated from charge trapping and de-trapping in the channel region rather than at the source/drain edges.

Complementary FET-The Future of the Semiconductor Transistor (Complementary FET로 열어가는 반도체 미래 기술)

  • S.H. Kim;S.H. Lee;W.J. Lee;J.W. Park;D.W. Suh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.52-61
    • /
    • 2023
  • With semiconductor scaling approaching the physical limits, devices including CMOS (complementary metal-oxide-semiconductor) components have managed to overcome yet are currently struggling with several technical issues like short-channel effects. Evolving from the process node of 22 nm with FinFET (fin field effect transistor), state-of-the-art semiconductor technology has reached the 3 nm node with the GAA-FET (gate-all-around FET), which appropriately addresses the main issues of power, performance, and cost. Technical problems remain regarding the foundry of GAA-FET, and next-generation devices called post-GAA transistors have not yet been devised, except for the CFET (complementary FET). We introduce a CFET that spatially stacks p- and n-channel FETs on the same footprint and describe its structure and fabrication. Technical details like stacking of nanosheets, special spacers, hetero-epitaxy, and selective recess are more thoroughly reviewed than in similar articles on CFET fabrication.

Design of Predistortion Linearizer using Common-Gate MESFET (공통 게이트 MESFET를 이용한 전치왜곡 선형화기 설계)

  • 주성남;박청룡;최조천;최충현;김갑기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • A linear power amplifier is particularly emphasized on the CDMA system using a linear modulation scheme, because IMD which cause adjacent channel interference and co channel Interference is mostly generated in a nonlinear power amplifier. In this paper, a new type of linearization technique proposed. It is presented that balanced MESFET predistortion linearizer added. Experimental result are present for Korea PCS frequency band. The implemented linearizer is applied to a 30dBm class. A power amplifier for simulation performance. Two-tone signals at 1850 MHz and 1851.23 MHz are injected into the main power amplifier. The main power amplifier with a 12.1dB gain and a P1dB of 30 dBm(two-tone) was utlized. The reduction of IMD is around 22dB.

  • PDF

A study on the Design of Predistortion Linearizer using Common-Gate MESFET (공통 게이트 MESFET를 이용한 전치왜곡 선형화기 설계에 관한 연구)

  • 김갑기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1369-1373
    • /
    • 2003
  • A linear power amplifier is particularly emphasized on the CDMA system using a linear modulation scheme, because IMD which cause adjacent channel interference and co channel interference is mostly generated in a nonlinear power amplifier. In this paper, a new type of linearization technique proposed. It is presented that balanced MESFET Predistortion linearizer added. Experimental result are present for Korea PCS frequency band. The implemented linearizer is applied to a 30㏈m class A power amplifier for simulation performance. Two-tone signals at 1850 MHz and 1851.23 MHz are injected into the main power amplifier. The main power amplifier with a 12.1㏈ gain and a P1㏈ of 30 ㏈m(two-tone) was utilized. The reduction of IMD is around 22㏈.

Implementation of Dual-Mode Channel Card for SDR-based Smart Antenna System (SDR기반 스마트 안테나 시스템을 위한 듀얼 모드 채널 카드 구현)

  • Kim, Jong-Eun;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1172-1176
    • /
    • 2008
  • In this paper, we describe the implementation and performance of a dual-mode Software Define Radio (SDR) smart antenna base station system. SDR technology enables a communication system to be reconfigured through software downloads to the flexible hardware platform that is implemented using programmable devices such as Digital Signal Processors (DSPs), Field Programmable Gate Arrays (FPGAs), and microprocessors. The presented base station channel card comprises the physical layer (pHY) including the baseband modem as well as the beamforming module. This channel card is designed to support TDD High-Speed Downlink Packet Access (HSDPA) as well as Wireless Broadband Portable Internet (WiBro) utilizing the SDR technology. We first describe the operations and functions required in WiBro and TDD HSDPA. Then, we explain the channel card design procedure and hardware implementation. Finally, we evaluate WiBro and TDD HSDPA performance by simulation and actual channel-card-based processing. Our smart antenna base-station dual-mode channel card shows flexibility and tremendous performance gains in terms of communication capacity and cell coverage.

Gate-Bias Control Technique for Envelope Tracking Doherty Power Amplifier (Envelope Tracking 도허티 전력 증폭기의 Gate-Bias Control Technique)

  • Moon, Jung-Hwan;Kim, Jang-Heon;Kim, Il-Du;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.807-813
    • /
    • 2008
  • The gate-biases of the Doherty power amplifier are controlled to improve the linearity performance. The linearity improvement mechanism of the Doherty amplifier is the harmonic cancellation of the carrier and peaking amplifier at the output power combining point. However, it is difficult to cancel the harmonic power for the broader power range because the condition for cancelling is varied by power. For the linearity improvement, we have explored the linearity characteristic of the Doherty amplifier according to the input power and gate biases of the carrier and peaking amplifier. To extend the region of harmonic power cancellation, we have injected the proper gate bias to the carrier and peaking amplifier according to the input power levels. To validate the linearity improvement, the Doherty amplifier is designed using Eudyna 10-W PEP GaN HEMT EGN010MKs at 2.345 GHz and optimized to achieve a high linearity and efficiency at an average output power of 33 dBm, backed off about 10 dB from the $P_{1dB}$. In the experiments, the envelope tracking Doherty amplifier delivers a significantly improved adjacent channel leakage ratio performance of -37.4 dBc, which is an enhancement of about 2.8 dB, maintaining the high PAE of about 26 % for the WCDMA 1-FA signal at an average output power of 33 dBm. For the 802.16-2004 signal, the amplifier is also improved by about 2 dB, -35 dB.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Electrical Properties of a-IGZO Thin Films for Transparent TFTs

  • Bang, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.99-99
    • /
    • 2010
  • Recently, amorphous transparent oxide semiconductors (TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). The TOS TFTs using a-IGZO channel layers exhibit a high electron mobility, a smooth surface, a uniform deposition at a large area, a high optical transparency, a low-temperature fabrication. In spite of many advantages of the sputtering process such as better step coverage, good uniformity over large area, small shadow effect and good adhesion, there are not enough researches about characteristics of a-IGZO thin films. In this study, therefore, we focused on the electrical properties of a-IGZO thin films as a channel layer of TFTs. TFTs with the a-IGZO channel layers and Y2O3 gate insulators were fabricated. Source and drain layers were deposited using ITO target. TFTs were deposited on unheated non-alkali glass substrates ($5cm{\times}5cm$) with a sintered ceramic IGZO disc (3 inch $\varnothing$, 5mm t), Y2O3 disc (3 inch $\varnothing$, 5mm t) and ITO disc (3 inch $\varnothing$, 5mm t) as a target by magnetron sputtering method. The O2 gas was used as the reactive gas. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of a-IGZO thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF