• Title/Summary/Keyword: p-adic integral

Search Result 38, Processing Time 0.019 seconds

SOME SYMMETRY IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS TWISTED BY UNRAMIFIED ROOTS OF UNITY

  • Kim, Dae San
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.603-618
    • /
    • 2015
  • We derive three identities of symmetry in two variables and eight in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by unramified roots of unity. The case of ramified roots of unity was treated previously. The derivations of identities are based on the p-adic integral expression, with respect to a measure introduced by Koblitz, of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.

TRIPLE SYMMETRIC IDENTITIES FOR w-CATALAN POLYNOMIALS

  • Kim, Dae San;Kim, Taekyun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1243-1264
    • /
    • 2017
  • In this paper, we introduce w-Catalan polynomials as a generalization of Catalan polynomials and derive fourteen basic identities of symmetry in three variables related to w-Catalan polynomials and analogues of alternating power sums. In addition, specializations of one of the variables as one give us new and interesting identities of symmetry even for two variables. The derivations of identities are based on the p-adic integral expression for the generating function of the w-Catalan polynomials and the quotient of p-adic integrals for that of the analogues of the alternating power sums.

A NOTE ON THE WEIGHTED q-BERNOULLI NUMBERS AND THE WEIGHTED q-BERNSTEIN POLYNOMIALS

  • Dolgy, D.V.;Kim, T.
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.519-527
    • /
    • 2011
  • Recently, the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$ are introduced in [3]: In this paper we give some interesting p-adic integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials related to the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$. From those integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials, we can derive some identities on the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$.

A NOTE ON THE q-EULER NUMBERS AND POLYNOMIALS WITH WEIGHT (α,ω)

  • Rim, Seog-Hoon;Jeong, Joo-Hee
    • Honam Mathematical Journal
    • /
    • v.34 no.2
    • /
    • pp.183-190
    • /
    • 2012
  • The main purpose of this paper is to introduce a new type of $q$-Euler numbers and polynomials with weak weight (${\alpha}$,${\omega}$): $\tilde{E}^{({\alpha},{\omega})}_{n,q}$ and $\tilde{E}^{({\alpha},{\omega})}_{n,q}(x)$, respectively. By using the fermionic $p$-adic $q$-integral on $\mathbb{Z}_p$, we can obtain some results and derive some recurrence identities for the $q$-Euler numbers and polynomials with weak weight (${\alpha}$,${\omega}$).

A RELATION OF GENERALIZED q-ω-EULER NUMBERS AND POLYNOMIALS

  • Park, Min Ji;Kim, Young Rok;Lee, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.413-421
    • /
    • 2017
  • In this paper, we study the generalizations of Euler numbers and polynomials by using the q-extension with p-adic integral on $\mathbb{Z}_p$. We call these: the generalized q-${\omega}$-Euler numbers $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and polynomials $E^{({\alpha})}_{n,q,{\omega}}(x;a)$. We investigate some elementary properties and relations for $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and $E^{({\alpha})}_{n,q,{\omega}}(x;a)$.

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].