KUMMER-TYPE CONGRUENCES FOR THE HIGHER ORDER EULER NUMBERS AND POLYNOMIALS ${ }^{\dagger}$

MIN-SOO KIM

Abstract

In this paper, by using the multiple fermionic p-adic integrals, we obtain Kummer-type congruences for the higher order Euler numbers and polynomials.

AMS Mathematics Subject Classification : 11B68, 11S80. Key words and phrases : Congruences, Fermionic p-adic integral, Euler numbers and polynomials.

1. Introduction

Euler numbers, denoted by E_{m} for $m \geq 0$, count the number of odd alternating permutations of a set with an even number of elements. They are related to the Bernoulli numbers. The odd-indexed Euler numbers are all zero since its generating function is even (see $[1,2,3,7,29]$). The Euler numbers E_{m} satisfy the following recurrence relation (cf. [29, (1.2)])

$$
\begin{equation*}
E_{0}=1, \quad(E+1)^{m}+(E-1)^{m}=0, \quad m \geq 1 \tag{1}
\end{equation*}
$$

From this, by the induction we can also conclude that the odd-indexed Euler numbers are all zero and all the Euler numbers E_{0}, E_{2}, \ldots are integers.

Let ℓ be a positive integer. Recently, Liu [18] introduced the higher order Euler numbers and gave some applications related to them. It is known [17, 18] that the higher order Euler numbers are defined by the following generating function

$$
\begin{equation*}
e^{E^{(\ell)}} t \equiv \sum_{m=0}^{\infty} \frac{\left(E^{(\ell)} t\right)^{m}}{m!} \equiv \sum_{m=0}^{\infty} E_{m}^{(\ell)} \frac{t^{m}}{m!}=\left(\frac{2}{e^{t}+e^{-t}}\right)^{\ell} \tag{2}
\end{equation*}
$$

[^0]where the symbol \equiv is used to denote symbolic or umbral equivalences understand as $\left(E^{(\ell)}\right)^{m} \equiv E_{m}^{(\ell)}$. From the multinomial theorem, we have
\[

$$
\begin{equation*}
\sum_{m=0}^{\infty} E_{m}^{(\ell)} \frac{t^{m}}{m!}=\sum_{m=0}^{\infty}\left(\sum_{\substack{j_{1}+\cdots+j_{\ell}=m \\ j_{1}, \ldots, j_{\ell} \geq 0}}\binom{m}{j_{1}, \ldots, j_{\ell}} E_{j_{1}} \cdots E_{j_{\ell}}\right) \frac{t^{m}}{m!} \tag{3}
\end{equation*}
$$

\]

By (3), we see that the higher order Euler numbers are linked with the ordinary Euler numbers by the following identity

$$
\begin{equation*}
E_{m}^{(\ell)}=\sum_{\substack{j_{1}+\cdots+j_{\ell}=m \\ j_{1}, \ldots, j_{\ell} \geq 0}}\binom{m}{j_{1}, \ldots, j_{\ell}} E_{j_{1}} \cdots E_{j_{\ell}}, \quad m \geq 0 \tag{4}
\end{equation*}
$$

It is seen from (1) and (4) that the higher order Euler numbers $E_{m}^{(\ell)}$ are integers. These numbers satisfy the following recurrence formula

$$
\sum_{j=0}^{\ell}\binom{\ell}{j}\left(E^{(\ell)}+2 j-\ell\right)^{m}= \begin{cases}2^{\ell}, & m=0 \tag{5}\\ 0, & m \geq 1\end{cases}
$$

in which we understand that the expression on the left is expanded in powers of $E^{(\ell)}$, and each terms $\left(E^{(\ell)}\right)^{m}$ is replaced by $E_{m}^{(\ell)}$. The higher order Euler polynomials $E_{m}^{(\ell)}(x)$ satisfy the following generating function

$$
\begin{equation*}
e^{E^{(\ell)}(x) t} \equiv \sum_{m=0}^{\infty} \frac{\left(E^{(\ell)}(x) t\right)^{m}}{m!} \equiv \sum_{m=0}^{\infty} E_{m}^{(\ell)}(x) \frac{t^{m}}{m!}=\left(\frac{2}{e^{t}+1}\right)^{\ell} e^{x t} \tag{6}
\end{equation*}
$$

in which, the symbol \equiv is used to denote symbolic or umbral equivalences. It has been appeared in $[5,(3.15)],[17,(8)]$ and $[22,(78)]$. Moreover, the relation $E_{m}^{(\ell)}=2^{m} E_{m}^{(\ell)}\left(\frac{\ell}{2}\right)$ follows by setting $x=\frac{\ell}{2}$ in (6), replacing t by $2 t$ and then comparing with (2). From (6), it is easy to verify that $E_{m}^{(\ell)}(x+y)=$ $\sum_{k=0}^{m}\binom{m}{k} E_{k}^{(\ell)}(x) y^{m-k}$. Note that we have $E_{m}^{(0)}(x)=x^{m}$.

It is also easy to see that $(\mathrm{d} / \mathrm{d} x) E_{m}^{(\ell)}(x)=m E_{m-1}^{(\ell)}(x)$ for $m>0$. From (2) and (6), we have the following the identity

$$
\begin{equation*}
\left(\frac{2}{e^{t}+1}\right)^{\ell} e^{x t}=\left(\frac{2}{e^{t / 2}+e^{-t / 2}}\right)^{\ell} e^{(x-\ell / 2) t} \tag{7}
\end{equation*}
$$

It implies the Taylor expansion of $E_{m}^{(\ell)}(x)$ around $x=\ell / 2$ (cf. [24]):

$$
\begin{equation*}
E_{m}^{(\ell)}(x)=\sum_{k=0}^{m}\binom{m}{k} \frac{E_{k}^{(\ell)}}{2^{k}}\left(x-\frac{\ell}{2}\right)^{m-k} \tag{8}
\end{equation*}
$$

which holds for all nonnegative integers m and all real x. Clearly, the classical Euler polynomials and numbers are given by

$$
\begin{equation*}
E_{m}(x):=E_{m}^{(1)}(x) \quad \text { and } \quad E_{m}:=E_{m}^{(1)}=2^{m} E_{m}\left(\frac{1}{2}\right) \tag{9}
\end{equation*}
$$

respectively (cf. [29]). From the generating function (6) we have $E_{m}(0)=0$ if m is even. Therefore, $E_{m} \neq E_{m}(0)$; in fact

$$
\begin{equation*}
E_{m}(0)=-E_{m}(1)=\frac{2}{m+1}\left(1-2^{m+1}\right) B_{m+1}, \quad m \geq 0 \tag{10}
\end{equation*}
$$

here we recall that the Bernoulli numbers B_{m} are defined by the generating function

$$
\begin{equation*}
e^{B t} \equiv \sum_{m=0}^{\infty} \frac{(B t)^{m}}{m!} \equiv \sum_{m=0}^{\infty} B_{m} \frac{t^{m}}{m!}=\frac{t}{e^{t}-1} \tag{11}
\end{equation*}
$$

We also mention that the Bernoulli polynomials $B_{m}(x)$ are defined by $B_{m}(x)=$ $\sum_{k=0}^{m}\binom{m}{k} x^{m-k} B_{k}$.

Recently, the higher order Euler numbers and polynomials have been investigated by many experts from different viewpoints such as number theory, mathematical analysis and statistics (see [2, 11, 25, 26, 28]). In [4], Chen obtained many interesting congruences related to Euler polynomials $E_{n}(x)$ by using the results of Eie and Ong [6]. Recently, the congruences for higher order Euler numbers have been further investigated by Liu [17, 18].

The main aim of this paper is to prove Kummer-type congruences for the higher order Euler numbers and polynomials by using the multiple fermionic p-adic integrals.

2. Higher order Euler numbers, polynomials and multiple Hurwitz-Euler eta functions

In this section, we shall introduce the higher order Euler numbers and polynomials, the multiple Hurwitz-Euler eta functions and analyze their elementary properties and relations.

For $q \geq 1$, we write

$$
\begin{align*}
\left(\frac{2 e^{t}}{e^{2 t}+1}\right)^{\ell}\left(1-\left(-e^{2 t}\right)^{q}\right)^{\ell} & =\left(2 e^{t}\right)^{\ell}\left(\frac{1-\left(-e^{2 t}\right)^{q}}{1-\left(-e^{2 t}\right)}\right)^{\ell} \\
& =2^{\ell} \sum_{j_{1}, \ldots, j_{\ell}=0}^{q-1}(-1)^{j_{1}+\cdots+j_{\ell}} e^{\left(2\left(j_{1}+\cdots+j_{\ell}\right)+\ell\right) t} \tag{12}
\end{align*}
$$

On the other hand, by using the binomial theorem and (2), we have

$$
\begin{align*}
\left(\frac{2 e^{t}}{e^{2 t}+1}\right)^{\ell}\left(1-\left(-e^{2 t}\right)^{q}\right)^{\ell} & =e^{E^{(\ell)} t} \sum_{j=0}^{\ell}\binom{\ell}{j}(-1)^{(q+1) j} e^{(2 q j) t} \\
& =\sum_{j=0}^{\ell}\binom{\ell}{j}(-1)^{(q+1) j} e^{\left(E^{(\ell)}+2 q j\right) t} . \tag{13}
\end{align*}
$$

Comparing the coefficients of t^{m} in the Taylor expansion around 0 for the righthand sides of (12) and (13), we get the following proposition.

Proposition 2.1. Let ℓ and q be positive integers. For any non-negative integer m, we have
$\sum_{j=0}^{\ell}\binom{\ell}{j}(-1)^{(q+1) j}\left(E^{(\ell)}+2 q j\right)^{m}=2^{\ell} \sum_{j_{1}, \ldots, j_{\ell}=0}^{q-1}(-1)^{j_{1}+\cdots+j_{\ell}}\left(2\left(j_{1}+\cdots+j_{\ell}\right)+\ell\right)^{m}$ with the usual convention of replacing $\left(E^{(\ell)}\right)^{i}$ by $E_{i}^{(\ell)}$.

Remark 2.1. Letting $\ell=1$ in Proposition 2.1, we have

$$
\begin{equation*}
E_{m}+(-1)^{q+1} \sum_{j=0}^{m}\binom{m}{j}(2 q)^{m-j} E_{j}=2 \sum_{j=0}^{q-1}(-1)^{j}(2 j+1)^{m} \tag{14}
\end{equation*}
$$

This identity is due to Maïga [21, Proposition 2.3].
Lemma 2.2. Let q be an odd integer with $q \geq 1$. Then for any non-negative integer m, we have

$$
E_{m}^{(\ell)} \equiv \sum_{j_{1}, \ldots, j_{\ell}=0}^{q-1}(-1)^{j_{1}+\cdots+j_{\ell}}\left(2\left(j_{1}+\cdots+j_{\ell}\right)+\ell\right)^{m} \quad(\bmod q)
$$

Proof. For $m \geq 0$ we have

$$
\left(E^{(\ell)}+2 q j\right)^{m}=\sum_{k=0}^{m}\binom{m}{k} E_{m-k}^{(\ell)}(2 q j)^{k}
$$

For an odd integer $q \geq 1$, the left hand side of Proposition 2.1 implies

$$
\begin{equation*}
\sum_{j=0}^{\ell}\binom{\ell}{j} \sum_{k=0}^{m}\binom{m}{k} E_{m-k}^{(\ell)}(2 q j)^{k} \equiv 2^{\ell} E_{m}^{(\ell)} \quad(\bmod q) \tag{15}
\end{equation*}
$$

since $\sum_{j=0}^{\ell}\binom{\ell}{j}=2^{\ell}$. Therefore, by Proposition 2.1 and (15) we obtain the assertion.

Letting $\ell=1$ in the above lemma, we immediately get the following result.
Corollary 2.3 ([8, Lemma 2.5]). Let q be an odd integer with $q \geq 1$. Then for any non-negative integer m, we have

$$
E_{m} \equiv \sum_{j=0}^{q-1}(-1)^{j}(2 j+1)^{m} \quad(\bmod q)
$$

Theorem 2.4. Let m be a positive integer and p an odd prime. We have

$$
E_{(p-1)+2 m}^{(\ell)} \equiv E_{2 m}^{(\ell)} \quad(\bmod p)
$$

Proof. By Lemma 2.2, we have

$$
E_{2 m}^{(\ell)} \equiv \sum_{j_{1}, \ldots, j_{\ell}=0}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}}\left(2\left(j_{1}+\cdots+j_{\ell}\right)+\ell\right)^{2 m} \quad(\bmod p)
$$

and

$$
E_{(p-1)+2 m}^{(\ell)} \equiv \sum_{j_{1}, \ldots, j_{\ell}=0}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}}\left(2\left(j_{1}+\cdots+j_{\ell}\right)+\ell\right)^{(p-1)+2 m} \quad(\bmod p) .
$$

Then by Fermat's Little Theorem we get

$$
E_{(p-1)+2 m}^{(\ell)} \equiv \sum_{j_{1}, \ldots, j_{\ell}=0}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}}\left(2\left(j_{1}+\cdots+j_{\ell}\right)+\ell\right)^{2 m} \equiv E_{2 m}^{(\ell)} \quad(\bmod p)
$$

which completes the proof of Theorem 2.4.
Putting $\ell=1$ in Theorem 2.4 we immediately get the following result.
Corollary 2.5 ([8, Theorem 3.2]). Let m be a positive integer and p an odd prime. We have

$$
E_{(p-1)+2 m} \equiv E_{2 m} \quad(\bmod p)
$$

The following is the definition for multiple Hurwitz-Euler eta functions.
Definition 2.6 ([5, p. 314, (3.3)]). For $x>0$ and $\ell \geq 1$, the multiple HurwitzEuler eta function $\eta_{\ell}(s, x)$ is defined by

$$
\begin{equation*}
\eta_{\ell}(s, x)=\sum_{k_{1}, \ldots, k_{\ell}=0}^{\infty} \frac{(-1)^{k_{1}+\cdots+k_{\ell}}}{\left(k_{1}+\cdots+k_{\ell}+x\right)^{s}}, \quad \operatorname{Re}(s)>0 \tag{16}
\end{equation*}
$$

Here $u^{s}=e^{s \log u}$ and $\log u=\log |u|+i \arg u$ with $-\pi<\arg u<\pi$ for any complex number u not on the nonpositive real axis.

In the case of $\ell=1$, it reduces to the Hurwitz-Euler eta function

$$
\begin{equation*}
\eta(s, x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+x)^{s}}, \quad \operatorname{Re}(s)>0 \tag{17}
\end{equation*}
$$

Further setting $x=1$ in the above equation, we recover the Dirichlet eta function (or the alternating Riemann zeta function)

$$
\begin{equation*}
\eta(s)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{s}}, \quad \operatorname{Re}(s)>0 \tag{18}
\end{equation*}
$$

The analytic continuation and special values of $\eta_{\ell}(s, x)$ are implied by the following contour integral representation of $\eta_{\ell}(s, x)$.

Theorem 2.7 ([5, Theorem 4]). The multiple Hurwitz-Euler eta function $\eta_{\ell}(s, x)$ is expressed as a contour integral

$$
\eta_{\ell}(s, x)=-\frac{\Gamma(1-s)}{2 \pi i} \int_{C} \frac{(-t)^{s-1} e^{-x t}}{\left(1+e^{-t}\right)^{\ell}} d t
$$

where $0<c<\pi$ and C is the path from $+\infty$ to c along the real axis, going along the circle around 0 of radius c counter-clockwise to c, and then going back
to $+\infty$. This expression gives us the analytic continuation of η_{ℓ} to the whole complex s-plane, and also for a positive integer m we find that

$$
\eta_{\ell}(-m, x)=\frac{(-1)^{m}}{2^{\ell}} E_{m}^{(\ell)}(\ell-x) .
$$

In particular, for the Hurwitz-Euler eta function $\eta(s, x)$, we have $\eta(-m, x)=$ $(-1)^{m} E_{m}(1-x) / 2$.

Let p be an odd prime number. We get rid of the terms $1 /\left(k_{1}+\cdots+k_{\ell}+x\right)^{s}$ with $k_{1}+\cdots+k_{\ell}$ divisible by p in (16) by defining

$$
\begin{equation*}
\tilde{\eta}_{\ell}(s, x)=\sum_{\substack{k_{1}, \ldots, k_{\ell}=0 \\ p \nmid\left(k_{1}+\cdots+k_{\ell}\right)}}^{\infty} \frac{(-1)^{k_{1}+\cdots+k_{\ell}}}{\left(k_{1}+\cdots+k_{\ell}+x\right)^{s}}, \tag{19}
\end{equation*}
$$

for $\operatorname{Re}(s)>0$ and $x>0$. From (19), we have

$$
\begin{align*}
\tilde{\eta}_{\ell}(s, x) & =\eta_{\ell}(s, x)-\sum_{\substack{k_{1}, \ldots, k_{\ell}=0 \\
p \mid\left(k_{1}+\cdots+k_{\ell}\right)}}^{\infty} \frac{(-1)^{k_{1}+\cdots+k_{\ell}}}{\left(k_{1}+\cdots+k_{\ell}+x\right)^{s}} \\
& =\eta_{\ell}(s, x)-\sum_{\substack{p-1}}^{\sum_{\substack{ \\
j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell}=0(\bmod p)}}^{\infty} \sum_{k_{1}^{\prime}, \ldots, k_{\ell}^{\prime}=0}^{\infty} \frac{(-1)^{j_{1}+p k_{1}^{\prime}+\cdots+j_{\ell}+p k_{\ell}^{\prime}}}{\left(j_{1}+p k_{1}^{\prime}+\cdots+j_{\ell}+p k_{\ell}^{\prime}+x\right)^{s}}} \\
& =\eta_{\ell}(s, x)-p^{-s} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell} \equiv 0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} \eta_{\ell}\left(s, \frac{j_{1}+\cdots+j_{\ell}+x}{p}\right) . \tag{20}
\end{align*}
$$

Since

$$
E_{m}^{(\ell)}(x)=(-1)^{m} E_{m}^{(\ell)}(\ell-x), \quad m \geq 0
$$

from Theorem 2.7 and (20) we have

$$
\begin{align*}
& \frac{1}{2^{\ell}}\left(E_{m}^{(\ell)}(x)-p^{m} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell} \equiv 0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} E_{m}^{(\ell)}\left(\frac{j_{1}+\cdots+j_{\ell}+x}{p}\right)\right) \\
& \quad=\eta_{\ell}(-m, x)-p^{m} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell}=0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} \eta_{\ell}\left(-m, \frac{j_{1}+\cdots+j_{\ell}+x}{p}\right) \\
& \quad=\tilde{\eta}_{\ell}(-m, x) . \tag{21}
\end{align*}
$$

Thus we get the following proposition.

Proposition 2.8. Let $m \geq 0$ and $x>0$. Then

$$
\begin{aligned}
& \tilde{\eta}_{\ell}(-m, x) \\
& =\frac{1}{2^{\ell}}\left(E_{m}^{(\ell)}(x)-p^{m} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell} \equiv 0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} E_{m}^{(\ell)}\left(\frac{j_{1}+\cdots+j_{\ell}+x}{p}\right)\right) .
\end{aligned}
$$

3. Kummer-type congruences for $E_{m}^{(\ell)}$ and $E_{m}^{(\ell)}(x)$

In this section, let p be a fixed odd prime number, let $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} be the ring of p-adic integers, the field of p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively, let $|\cdot|_{p}$ be the p-adic valuation on \mathbb{Q} with $|p|_{p}=p^{-1}$. As usual, the extended valuation on \mathbb{C}_{p} is also denoted by the same symbol $|\cdot|_{p}$.

Setting

$$
z+p^{N} \mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}| | x-\left.z\right|_{p} \leq p^{-N}\right\}
$$

where $z \in \mathbb{Z}$ lies in $0 \leq z<p^{N}$. For any positive integers N, we define

$$
\begin{equation*}
\mu_{-1}\left(z+p^{N} \mathbb{Z}_{p}\right)=(-1)^{z} \tag{22}
\end{equation*}
$$

which is known as be fermionic p-adic measures on \mathbb{Z}_{p}. Let $U D\left(\mathbb{Z}_{p}\right)$ be the space of uniformly (or strictly) differentiable function on \mathbb{Z}_{p}. Using the fermionic p-adic measure, we define the fermionic p-adic integral on \mathbb{Z}_{p} as follows:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(z) d \mu_{-1}(z)=\lim _{N \rightarrow \infty} \sum_{z=0}^{p^{N}-1} f(z)(-1)^{z} \tag{23}
\end{equation*}
$$

for $f \in U D\left(\mathbb{Z}_{p}\right)$. The fermionic p-adic integral (23) were independently found by Katz [9, p. 486] (in Katz's notation, the $\mu^{(2)}$-measure), Shiratani and Yamamoto [27], Osipov [23], Lang [16] (in Lang's notation, the $E_{1,2}$-measure), T. Kim [10] from very different viewpoints. Let E be the translation with $(E f)(z)=f(z+1)$. The formula (23) reduces to

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(z) d \mu_{-1}(z)=2 f(0)-\int_{\mathbb{Z}_{p}}(E f)(z) d \mu_{-1}(z) \tag{24}
\end{equation*}
$$

Let

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}^{\ell}}=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{\ell \text { times }} \tag{25}
\end{equation*}
$$

The multiple fermionic p-adic integrals considered here are defined as the iterated integrals. At the k th iteration with $1 \leq k \leq \ell$, for each fixed vector $\left(z_{k+1}, \ldots, z_{\ell}\right) \in \mathbb{Z}_{p}^{\ell-k}$, we integrate

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} F_{k}\left(z_{k}, z_{k+1}, \ldots, z_{\ell}\right) d \mu_{-1}\left(z_{k}\right) \tag{26}
\end{equation*}
$$

for $F_{k}\left(z_{k}, z_{k+1}, \ldots, z_{\ell}\right) \in U D\left(\mathbb{Z}_{p}\right)$. Under these conditions, we use the notation (cf. $[30,(2.29)])$

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}^{\ell}} f(\bar{z}) d \mu_{-1}(\bar{z}), \quad \text { where } \bar{z}=\left(z_{1}, \ldots, z_{\ell}\right) \tag{27}
\end{equation*}
$$

to denote the multivariate fermionic p-adic integral

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}^{\ell}} f\left(z_{1}, \ldots, z_{\ell}\right) d \mu_{-1}\left(z_{1}\right) \cdots d \mu_{-1}\left(z_{\ell}\right) \tag{28}
\end{equation*}
$$

Also, for any compact open subset O of \mathbb{Z}_{p}^{ℓ}, the integral of on O is defined by

$$
\int_{O} f(\bar{z}) d \mu_{-1}(\bar{z})=\int_{\mathbb{Z}_{p}^{\ell}} f(\bar{z}) \cdot(\text { characteristic function of } O) d \mu_{-1}(\bar{z})
$$

(cf. [13, Chap. II]). Setting

$$
D=\left\{\left.t \in \mathbb{C}_{p}| | t\right|_{p}<p^{-\frac{1}{p-1}}\right\} .
$$

For a fixed $t \in D, e^{\left(z_{1}+\cdots+z_{\ell}\right) t}$ is an analytic function for $\bar{z}=\left(z_{1}, \ldots, z_{\ell}\right)$. Applying (28) to the function

$$
f(\bar{z})=e^{\left(z_{1}+\cdots+z_{\ell}\right) t}
$$

we see that the generating function of higher order Euler polynomials can be represented by the fermionic p-adic integral on \mathbb{Z}_{p}, that is, for $t \in D$ and $x \in \mathbb{Z}_{p}$ we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}^{\ell}} e^{\left(x+z_{1}+\cdots+z_{\ell}\right) t} d \mu_{-1}(\bar{z})=\left(\frac{2}{e^{t}+1}\right)^{\ell} e^{x t}=\sum_{m=0}^{\infty} E_{m}^{(\ell)}(x) \frac{t^{m}}{m!} \tag{29}
\end{equation*}
$$

(cf. [10]). By substituting the Taylor expansion of $e^{\left(x+z_{1}+\cdots+z_{\ell}\right) t}$ in the above equation, we see that

$$
\begin{equation*}
\sum_{m=0}^{\infty} \int_{\mathbb{Z}_{p}^{\ell}}\left(x+z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \frac{t^{m}}{m!}=\sum_{m=0}^{\infty} E_{m}^{(\ell)}(x) \frac{t^{m}}{m!} \tag{30}
\end{equation*}
$$

Moreover, by comparing coefficients of $\frac{t^{m}}{m!}$ on the both sides in (30), for integers $m \geq 0$, we obtain

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}^{\ell}}\left(x+z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z})=E_{m}^{(\ell)}(x) \tag{31}
\end{equation*}
$$

which is similar with those in [11, 28]. Differentiating both sides of (31) with respect to x, we get

$$
\frac{d}{d x} E_{m}^{(\ell)}(x)=m E_{m-1}^{(\ell)}(x) \quad \text { and } \quad \operatorname{deg} E_{m}^{(\ell)}(x)=m
$$

From (29) and (31), we have the following lemma.

Lemma 3.1. (1) For integers $m \geq 0$ and $n \in \mathbb{N}$,

$$
\int_{\mathbb{Z}_{p}^{\ell}}\left(x+n\left(z_{1}+\cdots+z_{\ell}\right)\right)^{m} d \mu_{-1}(\bar{z})=n^{m} E_{m}^{(\ell)}\left(\frac{x}{n}\right) .
$$

(2) For integers $m \geq 0$,

$$
\sum_{j=0}^{\ell}\binom{\ell}{j} \int_{\mathbb{Z}_{p}^{\ell}}\left(j+x+z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z})=2^{\ell} x^{m}
$$

which is equivalent to

$$
E_{m}^{(\ell)}(x)+E_{m}^{(\ell)}(x+1)+\cdots+E_{m}^{(\ell)}(x+\ell)=2^{\ell} x^{m}
$$

In particular, we have $E_{m}(x)+E_{m}(x+1)=2 x^{m}$.
Proof. Part (1) follows immediately from (31). To see Part (2), note that by (29) we have

$$
\left(e^{t}+1\right)^{\ell} \int_{\mathbb{Z}_{p}^{\ell}} e^{\left(x+z_{1}+\cdots+z_{\ell}\right) t} d \mu_{-1}(\bar{z})=2^{\ell} e^{x t}
$$

The result follows by equating the coefficients of t in the above equation.
From (8) and Lemma 3.1(1) with $n=2, x=\ell$, we get

$$
\begin{equation*}
E_{m}^{(\ell)}=2^{m} E_{m}^{(\ell)}\left(\frac{\ell}{2}\right) \tag{32}
\end{equation*}
$$

(see [20, Proposition 10]). By changing $t \rightarrow 2 t$ and setting $x=\frac{\ell}{2}$ in (29), we obtain the following multiple fermionic p-adic integral representation for the generating function of the higher order Euler numbers.
Proposition 3.2. Let $t \in D$. We have

$$
\int_{\mathbb{Z}_{p}^{\ell}} e^{\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right) t} d \mu_{-1}(\bar{z})=\left(\frac{1}{\cosh t}\right)^{\ell}
$$

In particular, for integers $m \geq 0$, we have

$$
\int_{\mathbb{Z}_{p}^{\ell}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z})=E_{m}^{(\ell)}
$$

Remark 3.1. From (31) and Proposition 3.2, we have (see (8) above)

$$
\begin{aligned}
E_{m}^{(\ell)}(x) & =2^{-m} \int_{\mathbb{Z}_{p}^{\ell}}\left(2 x+2\left(z_{1}+\cdots+z_{\ell}\right)\right)^{m} d \mu_{-1}(\bar{z}) \\
& =2^{-m} \sum_{k=0}^{m}\binom{m}{k}(2 x-\ell)^{m-k} \int_{\mathbb{Z}_{p}^{\ell}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{k} d \mu_{-1}(\bar{z}) \\
& =\sum_{k=0}^{m}\binom{m}{k} \frac{1}{2^{k}}\left(x-\frac{\ell}{2}\right)^{m-k} E_{k}^{(\ell)}
\end{aligned}
$$

which can be seen as an extension of the Taylor expansion for $E_{m}(x)$ around $x=1 / 2$:

$$
E_{m}(x)=\sum_{k=0}^{m}\binom{m}{k} \frac{E_{k}}{2^{k}}\left(x-\frac{1}{2}\right)^{m-k}
$$

(see [22, p. 25, (32)]).
Proposition 3.3 ([12, Theorem 2.2(3)]). Let q be an odd positive integer. For $f \in U D\left(\mathbb{Z}_{p}\right)$, we have

$$
\int_{\mathbb{Z}_{p}} f(z) d \mu_{-1}(z)=\sum_{j=0}^{q-1}(-1)^{j} \int_{\mathbb{Z}_{p}} f(j+q z) d \mu_{-1}(z)
$$

Proof. Although it is known, we would like to provide a detail proof here for the completeness. From (23), we obtain

$$
\begin{aligned}
\sum_{j=0}^{q-1}(-1)^{j} \int_{\mathbb{Z}_{p}} f(j+q z) d \mu_{-1}(z) & =\sum_{j=0}^{q-1}(-1)^{j} \lim _{N \rightarrow \infty} \sum_{z=0}^{p^{N}-1} f(j+q z)(-1)^{z} \\
& =\lim _{N \rightarrow \infty} \sum_{z=0}^{q p^{N}-1} f(z)(-1)^{z} \\
& =\sum_{j=0}^{q-1}(-1)^{j} \lim _{N \rightarrow \infty} \sum_{z=0}^{p^{N}-1} f\left(j p^{N}+z\right)(-1)^{z}
\end{aligned}
$$

since p is an odd prime and q is an odd positive integer. Therefore, due to the uniform convergence, we can put the limit into the sum and get

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \sum_{z=0}^{p^{N}-1} f\left(j p^{N}+z\right)(-1)^{z} & =\lim _{N \rightarrow \infty} \sum_{z=0}^{p^{N}-1} \lim _{M \rightarrow \infty} f\left(j p^{M}+z\right)(-1)^{z} \\
& =\lim _{N \rightarrow \infty} \sum_{z=0}^{p^{N}-1} f(z)(-1)^{z}=\int_{\mathbb{Z}_{p}} f(z) d \mu_{-1}(z)
\end{aligned}
$$

for any integer j. This completes our proof.
From (31) and Proposition 3.3, we obtain the following corollary.
Corollary 3.4 (Multiple Raabe's theorem). For an odd integer q and $m \geq 0$, we have

$$
E_{m}^{(\ell)}(q x)=q^{m} \sum_{j_{1}, \ldots, j_{\ell}=0}^{q-1}(-1)^{j_{1}+\cdots+j_{\ell}} E_{m}^{(\ell)}\left(x+\frac{j_{1}+\cdot+j_{\ell}}{q}\right)
$$

Proposition 3.5. For integers $m \geq 1$ and $\ell \geq 1$, we have

$$
E_{m}^{(\ell)} \equiv 0 \quad(\bmod \ell)
$$

Remark 3.2. A different proof of Proposition 3.5 has been given in [18, Lemma $1]$.

Proof of Proposition 3.5. From Proposition 3.2 with $m=1$, we have

$$
\begin{aligned}
E_{1}^{(\ell)} & =\int_{\mathbb{Z}_{p}^{\ell}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right) d \mu_{-1}(\bar{z}) \\
& =\int_{\mathbb{Z}_{p}^{\ell}}\left(2 z_{1}+1\right) d \mu_{-1}(\bar{z})+\cdots+\int_{\mathbb{Z}_{p}^{\ell}}\left(2 z_{\ell}+1\right) d \mu_{-1}(\bar{z}) \\
& =E_{1} \cdot \int_{\mathbb{Z}_{p}^{\ell-1}} d \mu_{-1}\left(z_{2}, \ldots, z_{\ell}\right)+\cdots+E_{1} \cdot \int_{\mathbb{Z}_{p}^{\ell-1}} d \mu_{-1}\left(z_{1}, \ldots, z_{\ell-1}\right) \\
& =\ell E_{1}=0
\end{aligned}
$$

since $E_{1}=0$. On the other hand, for $m \geq 1$, we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}^{\ell}} z_{1}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z}) & =\int_{\mathbb{Z}_{p}^{\ell}} z_{2}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z}) \\
& =\cdots \\
& =\int_{\mathbb{Z}_{p}^{\ell}} z_{\ell}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z}) . \tag{33}
\end{align*}
$$

From Proposition 3.2 and (33), we have

$$
\begin{align*}
E_{m+1}^{(\ell)}= & 2 \int_{\mathbb{Z}_{p}^{\ell}}\left(z_{1}+\cdots+z_{\ell}\right)\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z}) \\
& +\ell \int_{\mathbb{Z}_{p}^{\ell}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z}) \\
= & 2 \ell \int_{\mathbb{Z}_{p}^{\ell}} z_{1}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z}) \tag{34}\\
& +\ell \int_{\mathbb{Z}_{p}^{\ell}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{m} d \mu_{-1}(\bar{z}) \\
\equiv & 0 \quad(\bmod \ell)
\end{align*}
$$

where $m \geq 0$. This completes the proof.

Proposition 3.6. For integers $m, n \geq 1$ and $\ell \geq 1$, we have

$$
E_{m}^{(\ell+n)} \equiv E_{m}^{(n)} \quad(\bmod \ell)
$$

Remark 3.3. For a different proof of Proposition 3.6, see [18, Lemma 2].

Proof of Proposition 3.6. For $\bar{z}=\left(z_{1}, \ldots, z_{\ell+n}\right) \in \mathbb{Z}_{p}^{\ell+n}$, by Proposition 3.2 we have

$$
\begin{align*}
& E_{m}^{(\ell+n)} \\
&= \int_{\mathbb{Z}_{p}^{\ell+n}}\left(2\left(z_{1}+\cdots+z_{\ell+n}\right)+\ell+n\right)^{m} d \mu_{-1}(\bar{z}) \\
&= \int_{\mathbb{Z}_{p}^{\ell+n}}\left(\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)+\left(2\left(z_{\ell+1}+\cdots+z_{\ell+n}\right)+n\right)\right)^{m} d \mu_{-1}(\bar{z}) \\
&= \sum_{i=1}^{m}\binom{m}{i} \int_{\mathbb{Z}_{p}^{\ell+n}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{i}\left(2\left(z_{\ell+1}+\cdots+z_{\ell+n}\right)+n\right)^{m-i} d \mu_{-1}(\bar{z}) \\
&+\int_{\mathbb{Z}_{p}^{\ell+n}}\left(2\left(z_{\ell+1}+\cdots+z_{\ell+n}\right)+n\right)^{m} d \mu_{-1}(\bar{z}) \\
&= \sum_{i=1}^{m}\binom{m}{i} \int_{\mathbb{Z}_{p}^{\ell}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{i} d \mu_{-1}\left(z_{1}, \ldots, z_{\ell}\right) \\
& \times \int_{\mathbb{Z}_{p}^{n}}\left(2\left(z_{\ell+1}+\cdots+z_{\ell+n}\right)+n\right)^{m-i} d \mu_{-1}\left(z_{\ell+1}, \ldots, z_{\ell+n}\right) \\
&+\int_{\mathbb{Z}_{p}^{\ell}} d \mu_{-1}\left(z_{1}, \ldots, z_{\ell}\right) \int_{\mathbb{Z}_{p}^{n}}\left(2\left(z_{\ell+1}+\cdots+z_{\ell+n}\right)+n\right)^{m} d \mu_{-1}\left(z_{\ell+1}, \ldots, z_{\ell+n}\right) \\
& \equiv E_{m}^{(n)}(\bmod \ell), \tag{35}
\end{align*}
$$

since

$$
E_{i}^{(\ell)}=\int_{\mathbb{Z}_{p}^{\ell}}\left(2\left(z_{1}+\cdots+z_{\ell}\right)+\ell\right)^{i} d \mu_{-1}\left(z_{1}, \ldots, z_{\ell}\right) \equiv 0 \quad(\bmod \ell), \quad i \geq 1
$$

(see Proposition 3.5 above) and

$$
E_{0}^{(\ell)}=\int_{\mathbb{Z}_{p}^{\ell}} d \mu_{-1}\left(z_{1}, \ldots, z_{\ell}\right)=\left(\int_{\mathbb{Z}_{p}} d \mu_{-1}(z)\right)^{\ell}=\left(E_{0}\right)^{\ell}=1
$$

This completes the proof.

Let \mathbb{Z}_{p}^{\times}be the group of p-adic units. Here we consider the function $f(\bar{z})=$ $e^{\left(z_{1}+\cdots+z_{\ell}\right) t}$ on the domains

$$
\left(\mathbb{Z}_{p}^{\ell}\right)^{\times}=\left\{\bar{z}=\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{Z}_{p}^{\ell} \mid z_{1}+\cdots+z_{\ell} \in \mathbb{Z}_{p}^{\times}\right\}
$$

and

$$
p\left(\mathbb{Z}_{p}^{\ell}\right)=\left\{\bar{z}=\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{Z}_{p}^{\ell} \mid z_{1}+\cdots+z_{\ell} \in p \mathbb{Z}_{p}\right\}
$$

It is easy to see that

$$
\begin{align*}
\int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z})= & \int_{\mathbb{Z}_{p}^{\ell}}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \\
& -\int_{p\left(\mathbb{Z}_{p}^{\ell}\right)}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \tag{36}
\end{align*}
$$

(cf. [13]). In the following, we will show that the expression

$$
\begin{equation*}
\int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \tag{37}
\end{equation*}
$$

can be interpolated p-adically. To our purpose, we deal with the second integral on the right-hand side of (36). For $|t|_{p}<p^{-\frac{1}{p-1}}$, by (23) and (28), we have

$$
\begin{align*}
& \int_{p\left(\mathbb{Z}_{p}^{\ell}\right)} e^{\left(z_{1}+\cdots+z_{\ell}\right) t} d \mu_{-1}(\bar{z}) \\
& =\lim _{N \rightarrow \infty} \sum_{\substack{z_{1}, \ldots, z_{\ell}=0 \\
z_{1}+\cdots+z_{\ell}=0(\bmod p)}}^{p^{N}-1} e^{\left(z_{1}+\cdots+z_{\ell}\right) t}(-1)^{z_{1}+\cdots+z_{\ell}} \\
& =\lim _{N \rightarrow \infty} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell}=0(\bmod p)}}^{p^{z_{1}^{\prime}, \ldots, z_{\ell}^{\prime}=0}} \sum^{p-1} e^{\left(\left(j_{1}+p z_{1}^{\prime}\right)+\cdots+\left(j_{\ell}+p z_{\ell}^{\prime}\right)\right) t} \tag{38}\\
& \\
& \times(-1)^{\left(j_{1}+p z_{1}^{\prime}\right)+\cdots+\left(j_{\ell}+p z_{\ell}^{\prime}\right)} \\
& =\sum_{\substack{p-1}}^{j_{1}, \ldots, j_{\ell}=0} e^{\left(j_{1}+\cdots+j_{\ell}\right) t}(-1)^{j_{1}+\cdots+j_{\ell}} \\
& j_{1}+\cdots+j_{\ell} \equiv 0(\bmod p) \\
& \\
& \times \lim _{N \rightarrow \infty}\left(\frac{1+e^{p^{N} t}}{1+e^{p t}}\right)^{\ell} .
\end{align*}
$$

Since $e^{p^{N} t} \rightarrow 1$ as $N \rightarrow \infty$, we find that

$$
\begin{align*}
& \int_{p\left(\mathbb{Z}_{p}^{\ell}\right)} e^{\left(z_{1}+\cdots+z_{\ell}\right) t} d \mu_{-1}(\bar{z}) \\
&=\sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell}=0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} e^{\left(j_{1}+\cdots+j_{\ell}\right) t}\left(\frac{2}{1+e^{p t}}\right)^{\ell} \tag{39}
\end{align*}
$$

By comparing the coefficients of $t^{m}(m \geq 0)$ in the above equation, we have

$$
\begin{align*}
& \int_{p\left(\mathbb{Z}_{p}^{\ell}\right)}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \\
&=p^{m} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell}=0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} E_{m}^{(\ell)}\left(\frac{j_{1}+\cdots+j_{\ell}}{p}\right) . \tag{40}
\end{align*}
$$

Therefore, we obtain the following result.
Lemma 3.7. For every nonnegative integers $m \geq 0$ and $\ell \geq 1$, we have

$$
\begin{aligned}
& \int_{p\left(\mathbb{Z}_{p}^{\ell}\right)}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \\
&=p^{m} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell}=0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} E_{m}^{(\ell)}\left(\frac{j_{1}+\cdots+j_{\ell}}{p}\right) .
\end{aligned}
$$

By (31), (36) and Lemma 3.7, we have the following result.
Lemma 3.8. For every nonnegative integers $m \geq 0$ and $\ell \geq 1$, we have

$$
\begin{aligned}
\int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times} & \left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \\
& =E_{m}^{(\ell)}(0)-p^{m} \sum_{\substack{j_{1}, \ldots, j_{\ell}=0 \\
j_{1}+\cdots+j_{\ell} \equiv 0(\bmod p)}}^{p-1}(-1)^{j_{1}+\cdots+j_{\ell}} E_{m}^{(\ell)}\left(\frac{j_{1}+\cdots+j_{\ell}}{p}\right) .
\end{aligned}
$$

For $z_{1}+\cdots+z_{\ell} \in \mathbb{Z}_{p}^{\times}$and $m \equiv n\left(\bmod p^{N}(p-1)\right)$, we have

$$
\int_{\left(\mathbb{Z}_{p}^{\ell}\right)^{\times}}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \equiv \int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{n} d \mu_{-1}(\bar{z}) \quad\left(\bmod p^{N+1}\right)
$$

(see [13, the corollary at the end of §5]). So by Lemma 3.8, we have the following result.

Theorem 3.9 (Kummer-type congruences). Let $m \equiv n\left(\bmod p^{N}(p-1)\right)$ with $p-1 \nmid m$. We have
$E_{m}^{(\ell)}(0)-p^{m} \sum_{\alpha \in J_{0}}(-1)^{p \alpha} E_{m}^{(\ell)}(\alpha) \equiv E_{n}^{(\ell)}(0)-p^{n} \sum_{\alpha \in J_{0}}(-1)^{p \alpha} E_{n}^{(\ell)}(\alpha) \quad\left(\bmod p^{N+1}\right)$,
where

$$
J_{0}=\left\{\begin{array}{l|l}
\frac{1}{p} & \bar{j} \\
\bar{j}=j_{1}+\cdots+j_{\ell} \equiv 0 \quad(\bmod p) \\
\text { for some } j_{1}, \ldots, j_{\ell} \text { with } 0 \leq j_{1}, \ldots, j_{\ell} \leq p-1
\end{array}\right\}
$$

and in $\sum_{\alpha \in J_{0}}$ we sum over $\alpha=\frac{1}{p} \bar{j}$ as many times as \bar{j} being expressed in the form $\bar{j}=j_{1}+\cdots+j_{\ell}$ by various j_{i} 's.

Letting $\ell=1$ in the above theorem, we immediately get:
Corollary 3.10. If $m \equiv n\left(\bmod p^{N}(p-1)\right)$ with $p-1 \nmid m$, then

$$
\left(1-p^{m}\right) E_{m}(0) \equiv\left(1-p^{n}\right) E_{n}(0) \quad\left(\bmod p^{N+1}\right) .
$$

By (10), Corollary 3.10 and the congruence

$$
2\left(1-2^{m+1}\right) \equiv 2\left(1-2^{n+1}\right) \quad\left(\bmod p^{N+1}\right)
$$

for $m=n\left(\bmod p^{N}(p-1)\right)$, we recover the following well-known Kummer congruence for Bernoulli numbers (see $[4,6,13]$).
Corollary $\mathbf{3 . 1 1}$ (The Kummer congruence for Bernoulli numbers). If $m=n$ $\left(\bmod p^{N}(p-1)\right)$ with $p-1 \nmid m$, then

$$
\left(1-p^{m}\right) \frac{B_{m+1}}{m+1} \equiv\left(1-p^{n}\right) \frac{B_{n+1}}{n+1} \quad\left(\bmod p^{N+1}\right)
$$

As a corollary, if $p-1 \nmid m$ and $m \equiv n\left(\bmod p^{N}(p-1)\right)$ and $m, n \geq N+2$, then

$$
\begin{equation*}
\frac{B_{m}}{m} \equiv \frac{B_{n}}{n} \quad\left(\bmod p^{N+1}\right) . \tag{41}
\end{equation*}
$$

This kind of congruence was first found by Kummer [15] around 1850s, but applying it to get the p-adic interpolation of the Riemann zeta function was discovered lately by Kubota and Leoplodt [14] in 1964.
Theorem 3.12. Let α, etc., be defined as above. The function

$$
\begin{equation*}
-m \longmapsto E_{m}^{(\ell)}(0)-p^{m} \sum_{\alpha \in J_{0}}(-1)^{p \alpha} E_{m}^{(\ell)}(\alpha) \tag{42}
\end{equation*}
$$

admits a continuation from the set $\{0,-1,-2, \ldots\}$ to \mathbb{Z}_{p} as a p-adic continuous function $\eta_{\ell, p}^{*}: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$. It has the integral representation

$$
\begin{equation*}
\eta_{\ell, p}^{*}(s)=\int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{-s} d \mu_{-1}(\bar{z}) . \tag{43}
\end{equation*}
$$

Proof. Let $z_{1}+\cdots+z_{\ell} \in \mathbb{Z}_{p}^{\times},(p, a) \neq 1$ and let $m \equiv m^{\prime}\left(\bmod p^{N}(p-1)\right)$ with $(p-1, m)=1$. It is easy to see that $\left(z_{1}+\cdots+z_{\ell}\right)^{m} \equiv\left(z_{1}+\cdots+z_{\ell}\right)^{m^{\prime}}$ $\left(\bmod p^{N+1}\right)$. Therefore, we have (using the corollary at the end of $\S 5$ in [13])

$$
\int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z}) \equiv \int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{m^{\prime}} d \mu_{-1}(\bar{z}) \quad\left(\bmod p^{N+1}\right)
$$

which allows us to extend the function

$$
f(m)=\int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{m} d \mu_{-1}(\bar{z})
$$

from $\{0,-1,-2, \ldots\}$ to \mathbb{Z}_{p} by the continuation. We denote this function by $\eta_{\ell, p}^{*}(s)$ and it has the integral representation

$$
\begin{equation*}
\eta_{\ell, p}^{*}(s)=\int_{\left(\mathbb{Z}_{p}^{\ell}\right) \times}\left(z_{1}+\cdots+z_{\ell}\right)^{-s} d \mu_{-1}(\bar{z}) \tag{44}
\end{equation*}
$$

Finally, the special values (42) follows from Proposition 2.8 and the proof of Lemma 3.8.

Acknowledgment : The author would like to thank Prof. Su Hu for his helpful comments and suggestions.

References

1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992.
2. A.T. Benjamin, J. Lentfer and T.C. Martinez, Counting on Euler and Bernoulli number identities, Fibonacci Quart. 58 (2020), 30-33.
3. A.T. Benjamin and J.J. Quinn, An alternate approach to alternating sums: a method to DIE for, College Math. J. 39 (2008), 191-201.
4. K.-W. Chen, Congruences for Euler numbers, Fibonacci Quart. 42 (2004), 128-140.
5. J. Choi and H.M. Srivastava, The multiple Hurwitz zeta function and the multiple HurwitzEuler eta function, Taiwanese J. Math. 15 (2011), 501-522.
6. M. Eie and Y.L. Ong, A generalization of Kummer's congruences, Abh. Math. Sem. Univ. Hamburg 67 (1997), 149-157.
7. R.C. Entringer, A Combinatorial Interpretation of the Euler and Bernoulli Numbers, Nieuw Arch. Wiskd. 14 (1966), 241-246.
8. Y. He, and Q. Liao, Some congruences involving Euler numbers, Fibonacci Quart. 46/47 (2008), 225-234.
9. N.M. Katz, p-adic L-functions via moduli of elliptic curves, Algebraic geometry, Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974, pp. 479-506, Amer. Math. Soc., Providence, R. I., 1975.
10. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_{p} at $q=-1$, J. Math. Anal. Appl. 331 (2007), 779-792.
11. M.-S. Kim and J.-W. Son, On a multidimensional Volkenborn integral and higher order Bernoulli numbers, Bull. Austral. Math. Soc. 65 (2002), 59-71.
12. M.-S. Kim and S. Hu, On p-adic Hurwitz-type Euler zeta functions, J. Number Theory 132 (2012), 2977-3015.
13. N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Second edition, Graduate Texts in Mathematics, 58, Springer-Verlag, New York, 1984.
14. T. Kubota und H.W. Leopoldt, Eine p-adische Theorie der Zetawerte. I. Einfuhrung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328339.
15. E.E. Kummer, Über eine allgemeine Eigenschaft der rationalen Entwickelungscoëficienten einer bestimmten Gattung analytischer Funktionen, J. Reine Angew. Math. 41 (1851), 368-372.
16. S. Lang, Cyclotomic Fields I and II, Combined 2nd ed., Springer-Verlag, New York, 1990.
17. G. Liu, Identities and congruences involving higher-order Euler-Bernoulli numbers and polynomials, Fibonacci Quart. 39 (2001), 279-284.
18. G. Liu, Congruences for higher-order Euler numbers, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 30-33.
19. H. Liu and W. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math. 309 (2009), 3346-3363.
20. H. Maïga, Some identities and congruences concerning Euler numbers and polynomials, J. Number Theory 130 (2010), 1590-1601.
21. H. Maïga, New identities and congruences for Euler numbers, Advances in nonArchimedean analysis, 139-158, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.
22. N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; Reprinted byChelsea, Bronx, New York, 1954.
23. Ju.V. Osipov, p-adic zeta functions, Uspekhi Mat. Nauk 34 (1979), 209-210.
24. J.L. Raabe, Zurückführung einiger Summen und bestmmtiem Integrale auf die JacobBernoullische Function, J. Reine Angew. Math. 42 (1851), 348-367.
25. C.S. Ryoo, On the (p, q)-analogue of Euler zeta function, J. Appl. Math. Inform. 35 (2017), 303-311.
26. C.S. Ryoo, Some properties of degenerate Carlitz-type twisted q-Euler numbers and polynomials, J. Appl. Math. Inform. 39 (2021), 1-11.
27. K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), 113-125.
28. Y. Simsek, Complete sum of products of (h, q)-extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (2010), 1331-1348.
29. Z.-W. Sun, Introduction to Bernoulli and Euler polynomials, A Lecture Given in Taiwan on June 6, 2002. http://maths.nju.edu.cn/ zwsun/BerE.pdf
30. B.A. Tangedal and P.T. Young, On p-adic multiple zeta and log gamma functions, J. Number Theory 131 (2011), 1240-1257.

Min-Soo Kim received Ph.D. degree from Kyungnam University. His main research area is analytic number theory. Recently, his main interests focus on p-adic analysis and zeta functions, Bernoulli and Euler numbers and polynomials.
Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam 51767, Republic of Korea.
e-mail: mskim@kyungnam.ac.kr

[^0]: Received April 20, 2022. Revised June 7, 2022. Accepted July 15, 2022.
 ${ }^{\dagger}$ This work was supported by the Kyungnam University Foundation Grant, 2021.
 © 2022 KSCAM.

