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1. Introduction

The area of the Bernoulli, Euler, Bernoulli, Genocchi, and tangent polynomi-
als have been worked by many authors. Those polynomials possess many inter-
esting properties and are of great importance in pure mathematics, for example,
number theory, mathematical analysis and in the calculus of finite differences.
Those polynomials also have various applications in other branches of science(see
[1-14]). The Carlitz type tangent numbers and polynomials possess many inter-
esting properties and arising in many areas of mathematics and physics. Re-
cently, many mathematicians have studied in the area of the q-extension of tan-
gent numbers and polynomials. In this paper, our aim in this paper is to discover
special symmetric properties for generalized Carlitz’s q-tangent polynomials.

Throughout this paper we use the following notations. By Zp we denote the
ring of p-adic rational integers, Qp denotes the field of p-adic rational numbers,
Cp denotes the completion of algebraic closure of Qp, N denotes the set of natural
numbers, Z denotes the ring of rational integers, Q denotes the field of rational
numbers, C denotes the set of complex numbers, and Z+ = N ∪ {0}. Let νp be

the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When
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one talks of q-extension, q is considered in many ways such as an indeterminate,
a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally

assume that |q| < 1. If q ∈ Cp, we normally assume that |q − 1|p < p−
1

p−1 so
that qx = exp(x log q) for |x|p ≤ 1. Throughout this paper we use the notation:

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1 + q
(cf. [4-14]) .

Hence, limq→1[x] = x for any x with |x|p ≤ 1 in the present p-adic case. Let

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function}.

Let a fixed positive integer d with (p, d) = 1, set

X = Xd = lim←−
N

(Z/dpNZ), X1 = X,

X∗ =
⋃

0<a<dp
(a,p)=1

a+ dpZp,

a+ dpNZp = {x ∈ X | x ≡ a (mod dpN )},

where a ∈ Z satisfies the condition 0 ≤ a < dpN . For g ∈ UD(Zp), the p-adic
invariant integral on Zp is defined by Kim to be

I−1(g) =

∫
X

g(x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

g(x)(−1)x, see [4]. (1.1)

First, we introduce the Carlitz’s type q-tangent numbers Tn,q and polynomials
Tn,q(x) and investigate their properties(see [6]).

For q ∈ Cp with |1− q|p < 1, the Carlitz’s q-tangent polynomials Tn,q(x) are
defined by

Tn,q(x) =

∫
Zp

qy[2y + x]nq dµ−1(y). (1.2)

Since [x+ 2y]q = [x]q + qx[2y]q, we easily see that

Tn,q(x) =

n∑
l=0

(
n

l

)
[x]n−lq qxlTl,q = 2

∞∑
m=0

(−1)mqm[x+ 2m]nq ,

with the usual convention of replacing (Tq)
n by Tn,q. When x = 0, Tn,q(0) =

Tn,χ,q is called the n-th generalized Carlitz’s q-tangent numbers.
By using p-adic integral, we obtain

Tn,q(x) = 2

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)lqxl

1

1 + q2l+1
,

Tn,q = 2

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + q2l+1
.
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2. Symmetric identities for generalized Carlitz’s q-tangent numbers
and polynomials

Our primary goal of this section is to obtain symmetric identities for gener-
alized Carlitz’s q-tangent numbers Tn,χ,q and polynomials Tn,χ,q(x). For q ∈ Cp
with |q − 1|p < 1, generalized Carlitz’s q-tangent polynomials Tn,χ,q(x) are de-
fined by

Tn,χ,q(x) =

∫
X

χ(y)qy[x+ 2y]nq dµ−1(y). (2.1)

When x = 0, Tn,χ,q(0) = Tn,χ,q is called the n-th generalized Carlitz’s q-tangent
numbers.

Let w1 and w2 be odd numbers. Then we have

∫
X

χ(y)qw1ye

[
w2x+

2w2

w1
j+2y

]
qw1

[w1]qt

dµ−1(y)

= lim
N→∞

dw2p
N−1∑

y=0

χ(y)e[w1w2x+2w2j+2w1y]qt(−1)y

= lim
N→∞

dw2−1∑
i=0

pN−1∑
y=0

χ(i)qw1(i+w2dy)e[w1w2x+2w2j+2w1(i+w2dy)]qt(−1)i+w2dy

(2.2)
From (2.2), we can derive the following equation (2.3):

dw1−1∑
j=0

χ(j)(−1)jqw2j

∫
X

χ(y)qw1ye

[
w2x+

2w2

w1
j+2y

]
qw1

[w1]qt

dµ−1(y)

= lim
N→∞

dw1−1∑
j=0

dw2−1∑
i=0

pN−1∑
y=0

χ(i)χ(j)(−1)i+jqw2jqw1iqdw1w2y

× e[w1w2x+2w2j+2w1i+2dw1w2y]qt(−1)y

(2.3)

By the same method as (2.3), we have

dw2−1∑
j=0

χ(j)(−1)jqw1j

∫
X

χ(y)qw2ye

[
w1x+

2w1

w2
j+2y

]
qw2

[w2]qt

dµ−1(y)

= lim
N→∞

dw2−1∑
j=0

dw1−1∑
i=0

pN−1∑
y=0

χ(j)χ(i)(−1)i+jqw1jqw2iqdw1w2y

× e[w1w2x+2w1j+2w2i+2w1w2dy]qt(−1)y

(2.4)

Therefore, by (2.3) and (2.4), we have the following theorem.
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Theorem 2.1. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

dw1−1∑
j=0

χ(j)(−1)jqw2j

∫
X

χ(y)qw1ye

[
w2x+

2w2

w1
j+2y

]
qw1

[w1]qt

dµ−1(y)

=

dw2−1∑
j=0

χ(j)(−1)jqw1j

∫
X

χ(y)qw2ye

[
w1x+

2w1

w2
j+2y

]
qw2

[w2]qt

dµ−1(y).

(2.5)

By substituting Taylor series of ext into (2.5) and after calculations, we obtain
the following corollary.

Corollary 2.2. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

[w1]nq

dw1−1∑
j=0

χ(j)(−1)jqw2j

∫
X

χ(y)qw1y

[
w2x+

2w2

w1
j + 2y

]n
qw1

dµ−1(y)

= [w2]nq

dw2−1∑
j=0

χ(j)(−1)jqw1j

∫
X

χ(y)qw2y

[
w1x+

2w1

w2
j + 2y

]n
qw2

dµ−1(y).

(2.6)

By (2.1) and Corollary 2.2, we have the following theorem.

Theorem 2.3. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

[w1]nq

dw1−1∑
j=0

χ(j)(−1)jqw2jTn,χ,qw1

(
w2x+

2w2

w1
j

)

= [w2]nq

dw2−1∑
j=0

χ(j)(−1)jqw1jTn,χ,qw2

(
w1x+

2w1

w2
j

)
.

By (2.6), we can derive the following equation (2.7):∫
X

χ(y)qw1y

[
w2x+

2w2

w1
j + 2y

]n
qw1

dµ−1(y)

=

n∑
i=0

(
n

i

)(
[w2]q
[w1]q

)i
[2j]iqw2 q

w2(n−i)j
∫
X

χ(y)qw1y [w2x+ 2y]
n−i
qw1 dµ−1(y)

=

n∑
i=0

(
n

i

)(
[w2]q
[w1]q

)i
[2j]iqw2 q

w2(n−i)jTn−i,χ,qw1 (w2x) .

(2.7)
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By (2.7), and Theorem 2.3, we have

[w1]nq

dw1−1∑
j=0

χ(j)(−1)jqw2j

∫
X

χ(y)qw1y

[
w2x+

2w2

w1
j + 2y

]n
qw1

dµ−1(y)

=

dw1−1∑
j=0

χ(j)(−1)jqw2j
n∑
i=0

(
n

i

)
[w2]iq[w1]n−iq [2j]iqw2 q

w2(n−i)jTn−i,χ,qw1 (w2x)

=
n∑
i=0

(
n

i

)
[w2]iq[w1]n−iq Tn−i,χ,qw1 (w2x)

dw1−1∑
j=0

χ(j)(−1)jqw2(n−i+1)j [2j]iqw2

=

n∑
i=0

(
n

i

)
[w2]iq[w1]n−iq Tn−i,χ,qw1 (w2x)Sn,i(dw1, q

w2 |χ),

(2.8)
where

Sn,i(w1, q|χ) =

w1−1∑
j=0

χ(j)(−1)jq(n−i+1)j [2j]iq

is called as the sums of powers. By the same method as (2.8), we get

[w2]nq

dw2−1∑
j=0

χ(j)(−1)jqw1j

∫
X

χ(y)qw2y

[
w1x+

2w1

w2
j + 2y

]n
qw2

dµ−1(y)

=
n∑
i=0

(
n

i

)
[w1]iq[w2]n−iq Tn−i,χ,qw2 (w1x)Sn,i(dw2, q

w1 |χ).

(2.9)

By (2.8) and (2.9), we have the following theorem.

Theorem 2.4. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

n∑
i=0

(
n

i

)
[w2]iq[w1]n−iq Sn,i(dw1, q

w2 |χ)Tn−i,χ,qw1 (w2x)

=
n∑
i=0

(
n

i

)
[w1]iq[w2]n−iq Sn,i(dw2, q

w1 |χ)Tn−i,χ,qw2 (w1x) .

By setting x = 0 in Theorem 2.4, we have the following corollary.

Corollary 2.5. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

n∑
i=0

(
n

i

)
[w2]iq[w1]n−iq Sn,i(dw1, q

w2 |χ)Tn−i,χ,qw1

=
n∑
i=0

(
n

i

)
[w1]iq[w2]n−iq Sn,i(dw2, q

w1 |χ)Tn−i,χ,qw2 .
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