• 제목/요약/키워드: p-adic integral

검색결과 38건 처리시간 0.02초

SOME REMARKS ON A q-ANALOGUE OF BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.221-236
    • /
    • 2002
  • Using the p-adic q-integral due to T. Kim[4], we define a number B*$_{n}$(q) and a polynomial B*$_{n}$(q) which are p-adic q-analogue of the ordinary Bernoulli number and Bernoulli polynomial, respectively. We investigate some properties of these. Also, we give slightly different construction of Tsumura's p-adic function $\ell$$_{p}$(u, s, $\chi$) [14] using the p-adic q-integral in [4].n [4].

p-진 q-적분의 변천사에 대한 고찰 (On the historical investigation of p-adic invariant q-integral on $\mathbb{Z}_p$)

  • 장이채;서종진;김태균
    • 한국수학사학회지
    • /
    • 제22권4호
    • /
    • pp.145-160
    • /
    • 2009
  • 20세기말 p-진 공간에서 p-진 q-적분의 개념이 김태균에 의해서 처음 도입 되었다([11]). 이러한 적분은 복소수 공간에서 잭슨의 q-적분을 p-진 공간으로 확장 시킨 것이며 또한 울트라 비 아르키메디언 적분의 존재성에 대한 질문의 답으로 볼 수 있다. 본 논문에서는 이러한 p-진 q-적분의 수학사적 배경을 살펴보고, 현재 어떠한 방향으로 연구가 진행되고 있는지를 고찰한다.

  • PDF

INTEGRAL BASES OVER p-ADIC FIELDS

  • Zaharescu, Alexandru
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.509-520
    • /
    • 2003
  • Let p be a prime number, $Q_{p}$ the field of p-adic numbers, K a finite extension of $Q_{p}$, $\bar{K}}$ a fixed algebraic closure of K and $C_{p}$ the completion of K with respect to the p-adic valuation. Let E be a closed subfield of $C_{p}$, containing K. Given elements $t_1$...,$t_{r}$ $\in$ E for which the field K($t_1$...,$t_{r}$) is dense in E, we construct integral bases of E over K.

ON THE q-EXTENSION OF THE HARDY-LITTLEWOOD-TYPE MAXIMAL OPERATOR RELATED TO q-VOLKENBORN INTEGRAL IN THE p-ADIC INTEGER RING

  • Jang, Lee-Chae
    • 충청수학회지
    • /
    • 제23권2호
    • /
    • pp.207-213
    • /
    • 2010
  • In this paper, we define the q-extension of the Hardy-Littlewood-type maximal operator related to q-Volkenborn integral. By the meaning of the extension of q-Volkenborn integral, we obtain the boundedness of the q-extension of the Hardy-Littlewood-type maximal operator in the p-adic integer ring.

A New Approach to the Lebesgue-Radon-Nikodym Theorem. with respect to Weighted p-adic Invariant Integral on ℤp

  • Rim, Seog-Hoon;Jeong, Joo-Hee
    • Kyungpook Mathematical Journal
    • /
    • 제52권3호
    • /
    • pp.299-306
    • /
    • 2012
  • We will give a new proof of the Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on $Z_p$, using Mahler expansion of continuous functions, studied by the authors in 2012. In the special case, q = 1, we can derive the same result as in Kim, 2012, Kim et al, 2011.

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

A NOTE ON THE WEIGHTED q-HARDY-LITTLEWOOD-TYPE MAXIMAL OPERATOR WITH RESPECT TO q-VOLKENBORN INTEGRAL IN THE p-ADIC INTEGER RING

  • Araci, Serkan;Acikgoz, Mehmet
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.365-372
    • /
    • 2013
  • The essential aim of this paper is to define weighted $q$-Hardylittlewood-type maximal operator by means of $p$-adic $q$-invariant distribution on $\mathbb{Z}_p$. Moreover, we give some interesting properties concerning this type maximal operator.

p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS

  • SIMSEK YILMAZ
    • 대한수학회지
    • /
    • 제43권1호
    • /
    • pp.111-131
    • /
    • 2006
  • The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on $\mathbb{Z}_p$, we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.

ANALYTIC PROPERTIES OF THE q-VOLKENBORN INTEGRAL ON THE RING OF p-ADIC INTEGERS

  • Kim, Min-Soo;Son, Jin-Woo
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.1-12
    • /
    • 2007
  • In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on the p-adic integer ring. By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.