A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

Jongsung Choi, Taekyun Kim and Young-Hee Kim

Abstract

In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on \mathbb{Z}_{p}. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}$, and \mathbb{C}_{p} will denote the ring of p-adic rational integers, the field of p adic rational numbers, and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$.

Let $|\cdot|$ be a p-adic norm with $|x|_{p}=p^{-r}$ where $x=p^{r} s / t$ and $(p, s)=(s, t)=(p, t)=1, \quad r \in \mathbb{Q}$. Let us assume that $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$ and $[x]_{q}=\frac{1-q^{x}}{1-q}($ see $[1-10])$. Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.

Let $C\left(\mathbb{Z}_{p}\right)$ be the space of continuous functions on \mathbb{Z}_{p}. For $f \in C\left(\mathbb{Z}_{p}\right)$, the fermionic p-adic invariant integral on \mathbb{Z}_{p} is defined by Kim as follows :

$$
\begin{equation*}
I(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x}, \text { (see [11]). } \tag{1}
\end{equation*}
$$

For $n \in \mathbb{N}$, let $f_{n}(x)=f(x+n)$. Then, by (1), we get

$$
\begin{equation*}
I\left(f_{n}\right)+(-1)^{n-1} I(f)=2 \sum_{l=0}^{n-1}(-1)^{n-1-l} f(l), \quad(\text { see }[2,3]) \tag{2}
\end{equation*}
$$

[^0]In the special case, $n=1$, we have

$$
\begin{equation*}
I\left(f_{1}\right)+I(f)=2 f(0) \tag{3}
\end{equation*}
$$

From (2) and (3), we note that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{x t} d \mu_{-1}(x)=\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} \tag{4}
\end{equation*}
$$

where E_{n} are the n-the Euler numbers (see [1-13]).
In the viewpoint of the q-extension of (4), we consider the q-analogues of Euler numbers and polynomials. From these q-Euler numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

2. q-analogues of Euler numbers and polynomials

In the viewpoint of the q-extension of (4), let us consider the following q-Euler numbers:

$$
\begin{equation*}
\tilde{\mathcal{E}}_{n, q}=\int_{\mathbb{Z}_{p}} q^{x} x^{n} d \mu_{-1}(x), \quad \text { where } n \in \mathbb{Z}_{+} \tag{5}
\end{equation*}
$$

Let $F_{q}(t)=\sum_{n=0}^{\infty} \tilde{\mathcal{E}}_{n, q} \frac{t^{n}}{n!}$. Then we see that

$$
\begin{equation*}
F_{q}(t)=\int_{\mathbb{Z}_{p}} q^{x} e^{x t} d \mu_{-1}(x)=\frac{2}{q e^{t}+1} \tag{6}
\end{equation*}
$$

From (5) and (6), we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} q^{x} e^{x t} d \mu_{-1}(x)=\frac{2}{q e^{t}+1}=\frac{1+q^{-1}}{e^{t}+q^{-1}}\left(\frac{2}{1+q}\right) \tag{7}
\end{equation*}
$$

and the Frobenius-Euler numbers are defined by

$$
\begin{equation*}
\frac{1-u}{e^{t}-u}=e^{H(u) t}=\sum_{n=0}^{\infty} H_{n}(u) \frac{t^{n}}{n!} \tag{8}
\end{equation*}
$$

with the usual convention about replacing $(H(u))^{n}$ by $H_{n}(u)$ (see [6, 11]).

By (6), (7) and (8), we obtain the following theorem.

Theorem 1. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{equation*}
\tilde{\mathcal{E}}_{n, q}=\frac{2}{1+q} H_{n}\left(-q^{-1}\right), \tag{9}
\end{equation*}
$$

where $H_{n}\left(-q^{-1}\right)$ are the n-th Frobenius-Euler numbers.
Now, we define the q-Euler polynomials as follows:

$$
\begin{equation*}
\tilde{\mathcal{E}}_{n, q}(x)=\int_{\mathbb{Z}_{p}} q^{y}(x+y)^{n} d \mu_{-1}(x), \quad \text { for } n \in \mathbb{Z}_{+} \tag{10}
\end{equation*}
$$

From (10), we have

$$
\begin{equation*}
\tilde{\mathcal{E}}_{n, q}(x)=\sum_{l=0}^{n}\binom{n}{l} x^{n-l} \tilde{\mathcal{E}}_{l, q}=\left(x+\tilde{\mathcal{E}}_{q}\right)^{n} \tag{11}
\end{equation*}
$$

with the usual convention about replacing $\left(\tilde{\mathcal{E}}_{q}\right)^{n}$ by $\tilde{\mathcal{E}}_{n, q}$.
Let

$$
F_{q}(x, t)=\sum_{n=0}^{\infty} \tilde{\mathcal{E}}_{n, q}(x) \frac{t^{n}}{n!}
$$

Then we have

$$
\begin{equation*}
F_{q}(x, t)=\int_{\mathbb{Z}_{p}} q^{y} e^{(x+y) t} d \mu_{-1}(y)=\frac{2}{q e^{t}+1} e^{x t} \tag{12}
\end{equation*}
$$

From (6) and (12), we note that

$$
\begin{equation*}
q F_{q}(1, t)+F_{q}(t)=2 \tag{13}
\end{equation*}
$$

Thus, by (13), we obtain the following theorem.
Theorem 2. For $n \in \mathbb{Z}_{+}$, we have

$$
q\left(\tilde{\mathcal{E}}_{q}+1\right)^{n}+\tilde{\mathcal{E}}_{n, q}= \begin{cases}2, & \text { if } n=0 \tag{14}\\ 0, & \text { if } n>0\end{cases}
$$

From Theorem 2, we get

$$
\tilde{\mathcal{E}}_{0, q}=\frac{2}{1+q}, \quad q\left(\tilde{\mathcal{E}}_{q}+1\right)^{n}+\tilde{\mathcal{E}}_{n, q}=0 \quad \text { if } n>0
$$

By (5) and (6), we get

$$
\begin{equation*}
q \int_{\mathbb{Z}_{p}} e^{-\left(1-x+x_{1}\right) t} q^{x_{1}} d \mu_{-1}\left(x_{1}\right)=\int_{\mathbb{Z}_{p}} q^{-x_{1}} e^{\left(x+x_{1}\right) t} d \mu_{-1}\left(x_{1}\right) \tag{15}
\end{equation*}
$$

Thus, by (15), we have

$$
\begin{equation*}
\frac{2 q}{q e^{-t}+1} e^{-(1-x) t}=\frac{2}{q^{-1} e^{t}+1} e^{x t} \tag{16}
\end{equation*}
$$

From (15) and (16), we can derive the following functional equation:

$$
\begin{equation*}
\sum_{n=0}^{\infty} q \tilde{\mathcal{E}}_{n, q}(1-x) \frac{(-1)^{n} t^{n}}{n!}=\sum_{n=0}^{\infty} \tilde{\mathcal{E}}_{n, q^{-1}}(x) \frac{t^{n}}{n!} \tag{17}
\end{equation*}
$$

By comparing the coefficients on the both sides in (17), we obtain the following theorem.

Theorem 3. For $n \in \mathbb{Z}_{+}$, we have

$$
(-1)^{n} q \tilde{\mathcal{E}}_{n, q}(1-x)=\tilde{\mathcal{E}}_{n, q^{-1}}(x)
$$

From Theorem 3, we have

$$
(-1)^{n} q \int_{\mathbb{Z}_{p}}\left(1-x+x_{1}\right)^{n} q^{x_{1}} d \mu_{-1}\left(x_{1}\right)=\int_{\mathbb{Z}_{p}}\left(x+x_{1}\right)^{n} q^{-x_{1}} d \mu_{-1}\left(x_{1}\right)
$$

By (14), we get

$$
\begin{align*}
q^{2} \tilde{\mathcal{E}}_{n, q}(2) & =q^{2}\left(\left(\tilde{\mathcal{E}}_{q}+1\right)+1\right)^{n}=q^{2} \sum_{l=0}^{n}\binom{n}{l}\left(\tilde{\mathcal{E}}_{q}+1\right)^{l} \\
& =q\left(2-\tilde{\mathcal{E}}_{0, q}-\sum_{l=1}^{n}\binom{n}{l} \tilde{\mathcal{E}}_{l, q}\right) \\
& =2 q-q \sum_{l=0}^{n}\binom{n}{l} \tilde{\mathcal{E}}_{l, q}=2 q-q\left(\tilde{\mathcal{E}}_{q}+1\right)^{n} \tag{18}\\
& =\left\{\begin{array}{cc}
2 q+\tilde{\mathcal{E}}_{0, q}-2, & \text { if } n=0, \\
2 q+\tilde{\mathcal{E}}_{n, q}, & \text { if } n>0
\end{array}\right.
\end{align*}
$$

Therefore, by (18), we obtain the following theorem.
Theorem 4. For $n \in \mathbb{Z}_{+}$, we have

$$
q^{2} \tilde{\mathcal{E}}_{n, q}(2)= \begin{cases}2 q-\frac{2 q}{1+q}, & \text { if } n=0, \\ 2 q+\tilde{\mathcal{E}}_{n, q}, & \text { if } n>0\end{cases}
$$

It is easy to show that

$$
\int_{\mathbb{Z}_{p}} q^{y}(x+y)^{n} d \mu_{-1}(y)=d^{n} \sum_{a=0}^{d-1}(-1)^{a} q^{a} \int_{\mathbb{Z}_{p}} q^{y d}\left(\frac{x+y}{d}+y\right)^{n} d \mu_{-1}(y)
$$

where $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. Therefore, by (19), we obtain the following proposition.

Proposition 5. For $n \in \mathbb{Z}_{+}$and $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have

$$
\tilde{\mathcal{E}}_{n, q}(x)=d^{n} \sum_{a=0}^{d-1}(-1)^{a} q^{a} \tilde{\mathcal{E}}_{n, q^{d}}\left(\frac{x+a}{d}\right) .
$$

References

[1] L. Carlitz, q-Bernstein numbers and polynomials, Duke Math. J. 15 (1948), 9871000.
[2] K. W. Hwang, D. V. Dolgy, T. Kim, S. H. Lee, On the higher-Order q-Euler numbers and polynomials with weight α, Discrete Dynamics in Nature and Society 2011 (2011), Article ID 354329, 12 pages.
[3] T. Kim, B. Lee, J. Choi, Y. H. Kim, S. H. Rim, On the q-Euler numbers and weighted q-Bernstein polynomials, Adv. Stud. Contemp. Math. 21 (2011), 13-18.
[4] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 16 (2009), 484-491.
[5] T. Kim, A note on q-Bernstein polynomials, Russ. J. Math. Phys. 18 (2011), 73-82.
[6] M. Can, M. Genkci, V. Kurt, Y. Simsek, Twisted Dedekind type sums associated with Barnes' type multiple Frobenius-Euler l-functions, Adv. Stud. Contemp. Math. 18 (2009), 135-160.
[7] A. Bayad, Modular properties of elliptic Bernoulli and Euler functions, Adv. Stud. Contemp. Math. 20 (2010), 389-401.
[8] Q.-M. Luo, q-analogues of some results for the Apostol-Euler polynomials, Adv. Stud. Contemp. Math. 20 (2010), 103-113.
[9] D. Ding, J. Yang Some identities related to the Apostol-Euler and ApostolBernoulli polynomials, Adv. Stud. Contemp. Math. 20 (2010), 7-21.
[10] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp. Math. 16 (2008), 161-170.
[11] T. Kim, A note on p-adic q-integral on \mathbb{Z}_{p} associated with q-Euler numbers, Adv. Stud. Contemp. Math. 15 (2007), 133-137.
[12] C. S. Ryoo, On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity, Proc. Jangjeon Math. Soc. 13 (2010), 255-263.
[13] S.-H. Rim, S. J. Lee, E. J. Moon, J. H. Jin, On the q-Genocchi numbers and polynomials associated with q-zeta function, Proc. Jangjeon Math. Soc. 12 (2009), 261-267.

Jongsung Choi
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea.
E-mail: jeschoi@kw.ac.kr

Taekyun Kim
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea.
E-mail: tkkim@kw.ac.kr

Young-Hee Kim
Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea.
E-mail: yhkim@kw.ac.kr

[^0]: Received September 16, 2011. Accepted October 1, 2011.
 2000 Mathematics Subject Classification. 11S80, 11B68.
 Key words and phrases. Bernoulli numbers and polynomials, Euler numbers and polynomials, fermionic p-adic integrlal, bosonic p-adic integral.

