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A NOTE ON THE ¢-ANALOGUES OF EULER
NUMBERS AND POLYNOMIALS

JONGSUNG CHOI, TAEKYUN KIM AND YOUNG-HEE KiMm

Abstract. In this paper, we consider the g-analogues of Euler num-
bers and polynomials using the fermionic p-adic invariant integral
on Zy,. From these numbers and polynomials, we derive some inter-
esting identities and properties on the g-analogues of Euler numbers
and polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Z,, Q,,
and C, will denote the ring of p-adic rational integers, the field of p-
adic rational numbers, and the completion of algebraic closure of Qp,
respectively. Let N be the set of natural numbers and Z, = NU {0}.

Let | - | be a p-adic norm with |z|, = p™" where x = p"s/t and
(p,s) = (s,t) = (p,t) =1, r € Q. Let us assume that ¢ € C, with
1 —qlp <1 and [z], = =L (see [1-10]). Note that limg ; [z], = .

Let C(Z,) be the space of continuous functions on Z,,. For f € C(Z,),
the fermionic p-adic invariant integral on Z,, is defined by Kim as follows

1) = [ f@dua@) = fim 3 J@0*, (e D). (1)
Zp x=0
For n € N, let f,(x) = f(z +n). Then, by (1), we get
n—1
I(fo) + (D" () =2 ()"0, (see[2,3). (2)
=0
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In the special case, n = 1, we have

I(f1) +1(f) = 2£(0). (3)
From (2) and (3), we note that

oo

2 t"
xt _ —
/ etdu_q(z) = Tl E Enm, (4)

Zp n=0

where E,, are the n-the Euler numbers (see [1-13]).

In the viewpoint of the g-extension of (4), we consider the g-analogues
of Euler numbers and polynomials. From these g-Fuler numbers and
polynomials, we derive some interesting identities and properties on the
g-analogues of Euler numbers and polynomials.

2. g-analogues of Euler numbers and polynomials

In the viewpoint of the g-extension of (4), let us consider the following
g-Euler numbers:

Eng :/ ¢ x"dp—1(x), where n € Z;. (5)

Zp

o0
I
Let Fy(t) = g En,qg. Then we see that
n=0 ’

2
F (1) = T xtd _ — ) 6
a(1) /que nale) = (6)
From (5) and (6), we have
2 1+q¢t, 2

/ ety () (-2, (7)

z, T+l g T4g

and the Frobenius-Euler numbers are defined by

1—-u — HWt _ } :Hn(wil, (8)
n.
n=0

et —u

with the usual convention about replacing (H(u))" by Hy(u) (see [6,
11)).
By (6), (7) and (8), we obtain the following theorem.
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Theorem 1. For n € Z, we have

~ 2 _

where H,,(—q~!) are the n-th Frobenius-Euler numbers.

Now, we define the ¢-Euler polynomials as follows:
Engql) = / ¢’(z +y)"du—1(z), forn € Zy.
ZP

From (10), we have

gn,q(x) = Z <Tll> wnilgl,q = (x + gq)na
=0

with the usual convention about replacing (£,)" by En.q-
Let

oo N t”
Fy(z,t) = Z&W(ma'
n=0
Then we have

Faat) = [ @l s ) =

P

2
get +1

xt

From (6) and (12), we note that
qFy(1,t) + F,(t) = 2.
Thus, by (13), we obtain the following theorem.
Theorem 2. For n € Z, we have

(f D é 2, if n=0,
+ " + n.g —
T 4 0, if n>0.

From Theorem 2, we get
~ 2
Eoqg=—,
0,9 1 + q
By (5) and (6), we get

@&+ 1)+ &0y =0 ifn>0.

P P

Thus, by (15), we have
2q e—(l—x)t _ 2 ot
ge7t+1 g let +1

Q/ 6_(1_I+xl)th1dﬂ_1($1):/ q—$1e(a:+x1)tdlu_1(x1).
7 Z
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(12)

(13)

(14)

(15)

(16)
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From (15) and (16), we can derive the following functional equation:

ntn

qun,q(l - x)(_il)' = Zé’n’qq(m)g. (17)
n=0 ’ n=0 ’

By comparing the coefficients on the both sides in (17), we obtain
the following theorem.
Theorem 3. For n € Z4, we have
(—1)”q<‘fn7q(1 —x) = gn’q—l(l').

From Theorem 3, we have

(—1)"g /Z (1= 2 + 1) g dpay (1) = /Z (& + 21)"g " dus (1),

P P

By (14), we get

" (18)
n\ ~ ~
~20-0Y () = 20—ty e 1y
=0
2+ &g —2, if n=0,
| 2q+éE., if n>0.

Therefore, by (18), we obtain the following theorem.
Theorem 4. For n € Z, we have
3 29— 2L, if n=0,
1*Enq(2) = e .
2q+&ngq, if n>0.

It is easy to show that

/z,, ¢! (z +y)"du-1(y) = d" §<—1>aqa /Z g’ (”’;y + y)n dp—1(y),

a=0 P

where d € N with d = 1 (mod 2). Therefore, by (19), we obtain the
following proposition.
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Proposition 5. Forn € Zy andd € N withd =1 (mod 2), we have

d—1
& m a ad T+a
Enyq(l‘) =d Z(_l) q gn,qd(T)'
a=0
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