## SOME REMARKS ON A q-ANALOGUE OF BERNOULLI NUMBERS

Min-Soo Kim and Jin-Woo Son

ABSTRACT. Using the p-adic q-integral due to T. Kim [4], we define a number  $B_n^*(q)$  and a polynomial  $B_n^*(x;q)$  which are p-adic q-analogue of the ordinary Bernoulli number and Bernoulli polynomial, respectively. We investigate some properties of these. Also, we give slightly different construction of Tsumura's p-adic function  $\ell_p(u,s,\chi)$  [14] using the p-adic q-integral in [4].

### 1. Introduction

Throughout this paper  $\mathbb{Z}_p, \mathbb{Q}_p$  and  $\mathbb{C}_p$  will respectively denote the ring of p-adic integers, the field of p-adic numbers and the completion of the algebraic closure of  $\mathbb{Q}_p$ . Let  $|\cdot|_p$  be the p-adic valuation of  $\mathbb{C}_p$  such that  $|p|_p = p^{-1}$ . If  $q \in \mathbb{C}_p$ , one normally assumes  $|q-1|_p < p^{-1/(p-1)}$  so that  $q^x = \exp(x \log q)$  for  $|x|_p \le 1$ . We use the notation

(1.1) 
$$[x] = [x;q] = \frac{1 - q^x}{1 - q}.$$

Hence,  $\lim_{q\to 1}[x;q]=x$  for any x with  $|x|_p\leq 1$ . Let  $UD(\mathbb{Z}_p)$  denote the space of all uniformly (or strictly) differentiable  $\mathbb{C}_p$ -valued functions on  $\mathbb{Z}_p$ . It is well-known that the  $I_0$ -integral of  $f\in UD(\mathbb{Z}_p)$  exists and is given by

(1.2) 
$$I_0(f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_0(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} f(x) \frac{1}{p^N},$$

Received March 12, 2001. Revised July 23, 2001.

2000 Mathematics Subject Classification: 11B68, 11E95.

Key words and phrases: q-analogue, Bernoulli numbers, p-adic q-integral.

where  $\mu_0$  is the ordinary p-adic distribution defined by  $\mu_0(x+p^N\mathbb{Z}_p)=\frac{1}{p^N}$ . The q-analogue of  $\mu_0$ , denote by  $\mu_q$ , defined by T. Kim [4] as follows: Let d be a fixed integer and p be a fixed prime number. We set

(1.3) 
$$X = \underbrace{\lim}_{N} (\mathbb{Z}/dp^{N}\mathbb{Z}), \quad X^{*} = \bigcup_{\substack{0 < a < dp \\ (a,p)=1}} a + dp\mathbb{Z}_{p},$$
$$a + dp^{N}\mathbb{Z}_{p} = \{x \in X \mid x \equiv a \pmod{dp^{N}}\},$$

where  $a \in \mathbb{Z}$  with  $0 \le a < dp^N$ . For any positive integer N,

(1.4) 
$$\mu_q(a + dp^N \mathbb{Z}_p) = \frac{q^a}{[dp^N]} = \frac{q^a}{[dp^N; q]}$$

is known as a distribution on X. In the case of d=1, this distribution yields an  $I_q$ -integral for  $f\in UD(\mathbb{Z}_p)$ 

(1.5) 
$$I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} f(x) \frac{q^x}{[p^N]}.$$

In particular, the relation between the  $I_0$ -integral and  $I_q$ -integral is given by

(1.5') 
$$\int_{\mathbb{Z}_p} f(x) d\mu_0(x) = \frac{\log q}{q-1} \int_{\mathbb{Z}_p} q^{-x} f(x) d\mu_q(x) \text{ for } f \in UD(\mathbb{Z}_p).$$

We recall variant Bernoulli numbers given by below in the symbolic form: For  $n \geq 0$ 

- $B_0 = 1$ ,  $(B+1)^n B_n = \begin{cases} 1 & \text{if } n=1 \\ 0 & \text{if } n > 1, \end{cases}$ (Ordinary Bernoulli numbers)
- $\beta_0(q) = 1$ ,  $q(q\beta(q) + 1)^n \beta_n(q) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1, \end{cases}$  (Carlitz's q-Bernoulli numbers (see [1]))
- $B_0(q) = \frac{q-1}{\log q}$ ,  $(qB(q)+1)^n B_n(q) = \begin{cases} 1 & \text{if } n=1\\ 0 & \text{if } n>1, \end{cases}$  (Tsumura's q-Bernoulli numbers (see [15]))
- $\mathcal{B}_0(q) = 0$ ,  $q(\mathcal{B}(q) + 1)^n \mathcal{B}_n(q) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1, \end{cases}$ (Kim's q-Bernoulli numbers (see [2], [9])).

It is known that variant Bernoulli numbers are connected with the  $I_0$ and  $I_q$ -integral as follows: For  $n \geq 0$ 

(1.6) 
$$I_0(x^n) = \int_{\mathbb{Z}_n} x^n d\mu_0(x) = B_n \text{ (Witt's formula);}$$

(1.7) 
$$I_q([x]^n) = \int_{\mathbb{Z}_p} [x]^n d\mu_q(x) = \beta_n(q) \text{ (see [4])};$$

(1.8) 
$$I_q(q^{-x}[x]^n) = \int_{\mathbb{Z}_n} q^{-x}[x]^n d\mu_q(x) = B_n(q) \text{ (see [3])};$$

(1.9) 
$$I_q(q^{-x}x^n) \stackrel{(1.5')}{=} \int_{\mathbb{Z}_p} q^{-x}x^n d\mu_q(x) = \frac{q-1}{\log q} B_n.$$

N. Koblitz [11] constructed the p-adic q-L-series which interpolated Carlitz's q-Bernoulli numbers  $\beta_n(q)$ . J. Satoh [13] constructed the complex q-L-series which interpolated Carlitz's q-Bernoulli numbers  $\beta_n(q)$ . T. Kim [4] proved that Carlitz's q-Bernoulli numbers  $\beta_n(q)$  can be represented as an integral by the q-analogue  $\mu_q$  of the ordinary p-adic invariant measure. In the complex case, H. Tsumura [15] studied a q-analogue of the Dirichlet L-series which interpolated q-Bernoulli numbers  $B_n(q)$ . In the p-adic case, T. Kim [3] constructed the p-adic q-L-function using the congruence on q-Bernoulli numbers  $B_n(q)$ .

In this paper, we consider a uniformly (strictly) differentiable function  $f(x) = x^n \ (n \ge 0)$  in the  $I_q$ -integral given by (1.5) and put

$$B_n^*(q) = \int_{\mathbb{Z}_p} x^n d\mu_q(x); \quad B_n^*(x;q) = \int_{\mathbb{Z}_p} (x+t)^n d\mu_q(t).$$

The purpose of this paper is to investigate the properties of a number  $B_n^*(q)$  and a polynomial  $B_n^*(x;q)$ . Also, we give slightly different construction of Tsumura's p-adic function  $\ell_p(u,s,\chi)$  [14] using the p-adic q-integral in [4].

## 2. Another p-adic q-Bernoulli number $B_n^*(q)$ and its basic properties

Set  $f(x) = x^n \in UD(\mathbb{Z}_p)$  for  $n \ge 0$  in the equation (1.5).

Now, for any integer  $n \geq 0$  we define a number  $B_n^*(q)$  and a polynomial  $B_n^*(x;q)$  in the variable  $x \in \mathbb{C}_p$  with  $|x|_p \leq 1$ , respectively, by

$$(2.1) B_n^*(q) \stackrel{\text{def}}{=} \int_{\mathbb{Z}_p} x^n d\mu_q(x); B_n^*(x;q) \stackrel{\text{def}}{=} \int_{\mathbb{Z}_p} (x+t)^n d\mu_q(t).$$

The generating function, denote by  $G_q^*(t)$ , of  $B_n^*(q)$  is given by

(2.2) 
$$G_q^*(t) = \frac{q-1}{\log q} \left( \frac{\log q + t}{qe^t - 1} \right) = \sum_{n=0}^{\infty} B_n^*(q) \frac{t^n}{n!}.$$

Indeed, for  $f(x) = q^x e^{xt} \in UD(\mathbb{Z}_p)$  using the equation  $I_0(f_1) =$  $I_0(f) + f'(0)$ , where  $f_1(x) = f(x+1)$  for all  $x \in \mathbb{Z}_p$ , we have

(2.3) 
$$I_0\left(q^x e^{xt}\right) = \frac{\log q + t}{qe^t - 1}.$$

From the formula (1.5'), we obtain

$$G_{q}^{*}(t) = \frac{q-1}{\log q} \left( \frac{\log q + t}{qe^{t} - 1} \right) = \frac{q-1}{\log q} I_{0} \left( q^{x} e^{xt} \right)$$

$$= \sum_{n=0}^{\infty} \left( \frac{q-1}{\log q} I_{0} \left( x^{n} q^{x} \right) \right) \frac{t^{n}}{n!} = \sum_{n=0}^{\infty} I_{q}(x^{n}) \frac{t^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} B_{n}^{*}(q) \frac{t^{n}}{n!}.$$

We can easily prove the following.

PROPOSITION 2.1. For  $n \geq 0$  and  $x \in \mathbb{Z}_p$ , we have

(1) 
$$B_0^*(q) = 1$$
,  $q(B^*(q) + 1)^n - B_n^*(q) = \begin{cases} \frac{q-1}{\log q} & \text{if } n = 1\\ 0 & \text{if } n > 1 \end{cases}$ ;

- (2)  $\lim_{q\to 1} B_n^*(q) = B_n;$ (3)  $B_n^*(x;q) = (B^*(q) + x)^n$  and  $\lim_{q\to 1} B_n^*(x;q) = B_n(x),$  where  $B_n(x)$  is the ordinary Bernoulli polynomial.

From Proposition 2.1 we may say that a number  $B_n^*(q)$  and a polynomial  $B_n^*(x;q)$  are another p-adic q-analogue of ordinary Bernoulli number and Bernoulli polynomial, respectively.

PROPOSITION 2.2. For  $m, n \geq 0$  and  $x \in \mathbb{Z}_p$ , we have

$$\begin{array}{ll} (1) \ I_0(x^mq^m) = \frac{n\log q}{q-1}I_{q^n}(x^m) = \frac{\log q}{q-1}B_m^*(q^n); \\ (2) \ I_q(x^mq^m) = \sum_{s=0}^{\infty}\frac{(\log q^n)^s}{s!}B_{m+s}^*(q). \end{array}$$

(2) 
$$I_q(x^m q^m) = \sum_{s=0}^{\infty} \frac{(\log q^n)^s}{s!} B_{m+s}^*(q).$$

Lemma 2.3. For  $n \ge 0$ 

$$\int_{\mathbb{Z}_n} x^n d\mu_q(x) = \int_X x^n d\mu_q(x).$$

*Proof.* Note that  $d\mu_q(x) = \frac{(q-1)q^x}{\log q} \ d\mu_0(x)$  for  $|1-q|_p < p^{-1/(p-1)}$  (see [4], [10]). It is well known that  $\int_{\mathbb{Z}_p} x^n \ d\mu_0(x) = \int_X x^n \ d\mu_0(x)$  for  $n \ge 0$  (cf. [4, Lemma 1]) and  $q^x = \sum_{s=0}^\infty \frac{x^s (\log q)^s}{s!}$  for  $|1-q|_p < p^{-1/(p-1)}$ . The result now follows easily.

LEMMA 2.4. For any positive integer d and  $k \ge 0$ 

$$B_k^*(x;q) = d^k[d]^{-1} \sum_{i=0}^{d-1} q^i B_k^* \left(\frac{x+i}{d}; q^d\right).$$

Proof. By Lemma 2.3 we have

$$\begin{split} B_k^*(x;q) &= \lim_{N \to \infty} \frac{1}{[dp^N]} \sum_{n=0}^{dp^N-1} q^n (x+n)^k \\ &= \lim_{N \to \infty} \frac{1}{[d]} \frac{1}{[p^N;q^d]} \sum_{i=0}^{d-1} \sum_{n=0}^{p^N-1} q^{i+dn} (x+i+dn)^k \\ &= [d]^{-1} \sum_{i=0}^{d-1} d^k q^i \lim_{N \to \infty} \frac{1}{[p^N;q^d]} \sum_{n=0}^{p^N-1} (q^d)^n \left(\frac{x+i}{d}+n\right)^k \\ &= [d]^{-1} \sum_{i=0}^{d-1} d^k q^i \int_{\mathbb{Z}_p} \left(\frac{x+i}{d}+t\right)^k d\mu_{q^d}(t) \\ &= d^k [d]^{-1} \sum_{i=0}^{d-1} q^i B_k^* \left(\frac{x+i}{d};q^d\right). \end{split}$$

This completes the proof.

THEOREM 2.5. For  $k \geq 0$ , let  $\mu_k^* = \mu_{k,q}^*$  be define by

$$\mu_k^*(a+dp^N\mathbb{Z}_p)\stackrel{\mathrm{def}}{=} (dp^N)^k[dp^N]^{-1}q^aB_k^*\left(\frac{a}{dp^N};q^{dp^N}\right),$$

where N and d are positive integers. Then  $\mu_k^*$  is a distribution on X.

*Proof.* Since  $\mu_{0;q}^* = \mu_q$  which is a distribution on X (see [4]), for any positive integer k we show that  $\mu_k^*$  is a distribution on X. For that, it is suffices to check that

$$\begin{split} &\sum_{i=0}^{p-1} \mu_k^* (a + idp^N + dp^{N+1} \mathbb{Z}_p) \\ &= (dp^{N+1})^k q^a [dp^{N+1}]^{-1} \sum_{i=0}^{p-1} q^{idp^N} B_k^* \left(\frac{a + idp^N}{dp^{N+1}}; q^{dp^{N+1}}\right) \\ &= (dp^N)^k q^a [dp^N]^{-1} \left\{ \frac{p^k}{[p; q^{dp^N}]} \sum_{i=0}^{p-1} (q^{dp^N})^i B_k^* \left(\frac{\frac{a}{dp^N} + i}{p}; (q^{dp^N})^p\right) \right\} \\ &= (dp^N)^k [dp^N]^{-1} q^a B_k^* \left(\frac{a}{dp^N}; q^{dp^N}\right) \text{ (using Lemma 2.4)} \\ &= \mu_k^* (a + dp^N \mathbb{Z}_p). \end{split}$$

This completes the proof.

# 3. A generalized q-Bernoulli numbers $B_{k,\chi}^*(q)$ and related properties

Let  $\chi$  be a Dirichlet character with conductor d, where d is a positive integer. For  $k \geq 0$  we define the k-th generalized q-Bernoulli number belonging to the character  $\chi$  by

(3.1) 
$$B_{k,\chi}^*(q) \stackrel{\text{def}}{=} \int_X \chi(x) x^k d\mu_q(x).$$

Using a similar method used in the proof of Lemma 2.4, we may perform the integral in the right hand side of (3.1) to get

(3.2) 
$$B_{k,\chi}^*(q) = d^k[d]^{-1} \sum_{a=0}^{d-1} q^a \chi(a) B_k^* \left(\frac{a}{d}; q^d\right).$$

PROPOSITION 3.1. For  $k \geq 0$ , we have

- $\begin{array}{ll} (1) & \int_X \chi(x) d\mu_k^*(x) = B_{k,\chi}^*(q); \\ (2) & \int_{pX} \chi(x) d\mu_k^*(x) = \chi(p) p^k[p]^{-1} B_{k,\chi}^*(q^p); \end{array}$
- (3)  $\int_{X} \chi(x) d\mu_{k;q^{c}}^{*}(\frac{1}{c}x) = \chi(c) B_{k,\chi}^{*}(q^{c});$ (4)  $\int_{pX} \chi(x) d\mu_{k;q^{c}}^{*}(\frac{1}{c}x) = \chi(c) \chi(p) p^{k}[p]^{-1} B_{k,\chi}^{*}(q^{pc}).$

*Proof.* Using the definition of  $\mu_{k;q}^*$  given by Theorem 2.5 and the formula (3.2), the proofs are clear.

Corollary 3.2. For  $k \ge 0$ 

$$\int_X \chi(x) x^k d\mu_q(x) = \int_X \chi(x) d\mu_k^*(x).$$

*Proof.* The definition of  $B_{k,\chi}^*(q)$  and Proposition 3.1(1) imply

$$\int_X \chi(x) x^k d\mu_q(x) = \int_X \chi(x) d\mu_k^*(x).$$

This completes the proof.

We set

(3.3) 
$$p^* = \begin{cases} p & \text{if } p > 2\\ 4 & \text{if } p = 2. \end{cases}$$

Let  $\bar{d} = [d, p^*]$  be the least common multiple of conductor d of  $\chi$  and  $p^*$ . By using the  $I_q$ -integral, we have the Witt's type formula in the p-adic cyclotomic field  $\mathbb{Q}_p(\chi)$  as follows:

(3.4) 
$$B_{k,\chi}^*(q) = \lim_{N \to \infty} \sum_{x=1}^{\bar{d}p^N} \chi(x) x^k \frac{q^x}{[\bar{d}p^N]}, \quad k \ge 0.$$

For any rational integers s and t, let  $\chi^s = \chi^{s,k;q}$  be an operator on f(q) as follows:

(3.5) 
$$\chi^s f(q) \stackrel{\text{def}}{=} s^k [s]^{-1} \chi(s) f(q^s);$$

(3.6) 
$$\chi^s \chi^t \stackrel{\text{def}}{=} [s]^{-1} [s; q^t] \left( \chi^{s,k;q^t} \circ \chi^{t,k;q} \right).$$

Now we choose a rational integer number c such that  $(c, \bar{d}) = 1$  and  $c \neq \pm 1$ , and we put

$$(3.7) \qquad \mu_k^c = \frac{1}{k} \frac{\log q}{q-1} \left( \mu_{k;q}^*(U) - c^{k+1}[c]^{-1} \mu_{k;q^c}^* \left( \frac{1}{c} U \right) \right), \ k \geq 1,$$

where  $U \subset X$  is compact open set. Then  $\mu_k^c$  must be a distribution on X ( $\mu_k^c$  is not a measure on X) and, using Proposition 3.1 and the definition of the operator  $\chi^p$ ,  $\chi^c$  and  $\chi^p\chi^c$  given by (3.5) and (3.6), this distribution yields an integral on  $X^* = X - pX$  as follows:

$$\begin{split} &\int_{X^*} \chi(x) d\mu_k^c(x) \\ &= \int_X \chi(x) d\mu_k^c(x) - \int_{pX} \chi(x) d\mu_k^c(x) \\ &= \frac{1}{k} \frac{\log q}{q-1} \left( \int_X \chi(x) d\mu_{k;q}^*(x) - c^{k+1} [c]^{-1} \int_X \chi(x) d\mu_{k;q^c}^*(\frac{1}{c}x) \right) \\ &\quad - \frac{1}{k} \frac{\log q}{q-1} \left( \int_{pX} \chi(x) d\mu_{k;q}^*(x) - c^{k+1} [c]^{-1} \int_{pX} \chi(x) d\mu_{k;q^c}^*(\frac{1}{c}x) \right) \\ &= \frac{1}{k} \frac{\log q}{q-1} \left\{ \left( B_{k,\chi}^*(q) - p^k [p]^{-1} \chi(p) B_{k,\chi}^*(q^p) \right) \\ &\quad - \chi(c) c^{k+1} [c]^{-1} \left( B_{k,\chi}^*(q^c) - p^k [p]^{-1} \chi(p) B_{k,\chi}^*(q^{pc}) \right) \right\} \\ &= \frac{\log q}{q-1} (1-\chi^p) (1-c\chi^c) \frac{B_{k,\chi}^*(q)}{k}. \end{split}$$

Hence we obtain

(3.8) 
$$\int_{X^*} \chi(x) d\mu_k^c(x) = \frac{\log q}{q-1} (1-\chi^p) (1-c\chi^c) \frac{B_{k,\chi}^*(q)}{k}.$$

Theorem 3.3. For  $k \ge 1$ 

$$\int_{X^*} \chi(x) d\mu_k^c(x) = \lim_{N \to \infty} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^{k-1} \left[ -\frac{cx}{\bar{d}p^N} \right]_g q^{cx},$$

where  $\sum^*$  means to take sums over the rational integers prime to p in the given range, c is a rational integer number such that  $(c, \bar{d}) = 1$  and  $c \neq \pm 1$ , and  $[\cdot]_g$  is Gauss's symbol.

Proof. From (3.8) we must show that

$$\lim_{N\to\infty}\sum_{x=1}^{\bar{d}p^N}\chi(cx)(cx)^{k-1}\left[-\frac{cx}{\bar{d}p^N}\right]_qq^{cx}=\frac{\log q}{q-1}(1-\chi^p)(1-c\chi^c)\frac{B_{k,\chi}^*(q)}{k}.$$

We can rewrite  $B_{k,\gamma}^*(q)$ ,  $k \ge 1$ , given by (3.4) as

$$B_{k,\chi}^{*}(q) = \lim_{N \to \infty} \frac{1}{[\bar{d}p^{N}]} \sum_{x=1}^{\bar{d}p^{N}} \chi(x) x^{k} q^{x} + \lim_{N \to \infty} \frac{1}{[\bar{d}p^{N-1}; q^{p}]} \frac{1}{[p]} \sum_{y=1}^{\bar{d}p^{N-1}} \chi(py) (py)^{k} q^{py}$$

$$= \lim_{N \to \infty} \frac{1}{[\bar{d}p^N]} \sum_{x=1}^{\bar{d}p^N} \chi(x) x^k q^x + p^k [p]^{-1} \chi(p) B_{k,\chi}^*(q^p).$$

That is,

(A) 
$$\lim_{N \to \infty} \frac{1}{[\bar{d}p^N]} \sum_{x=1}^{\bar{d}p^N} \chi(x) x^k q^x = B_{k,\chi}^*(q) - p^k[p]^{-1} \chi(p) B_{k,\chi}^*(q^p).$$

We choose a rational integer number c such that  $(c, \bar{d}) = 1$  and  $c \neq \pm 1$ . Let x and  $x_N$  be the rational integers such that  $1 \leq x, x_N \leq \bar{d}p^N$  and  $(x, p) = (x_N, p) = 1$ , and determine a rational integer number  $r_N(x)$  by  $x_N = cx + r_N(x)\bar{d}p^N$ , i.e.,

(B) 
$$r_N(x) = -\frac{cx}{\bar{d}p^N} + \frac{x_N}{\bar{d}p^N} = \left[ -\frac{cx}{\bar{d}p^N} \right]_c,$$

where  $[\cdot]_q$  is Gauss's symbol. Then we have

$$\begin{split} &\frac{1}{[\bar{d}p^N]} \sum_{x_N=1}^{\bar{d}p^N} \chi(x_N)(x_N)^k q^{x_N} \\ &= \sum_{x=1}^{\bar{d}p^N} \chi(cx) \Big\{ (cx)^k + k(cx)^{k-1} \big( r_N(x) \bar{d}p^N \big) + \dots + \big( r_N(x) \bar{d}p^N \big)^k \Big\} \frac{q^{x_N}}{[\bar{d}p^N]} \\ &\equiv \frac{1}{[\bar{d}p^N]} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^k q^{x_N} + k \frac{\bar{d}p^N}{[\bar{d}p^N]} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^{k-1} r_N(x) q^{x_N} \\ &\pmod{(\bar{d}p^N)^2 [\bar{d}p^N]^{-1}}. \end{split}$$

Since

$$\lim_{N \to \infty} q^{r_N(x)d\bar{p}^N} = 1 \text{ for } |1 - q|_p < p^{-1/(p-1)}; \quad \lim_{N \to \infty} \frac{\bar{d}p^N}{|\bar{d}p^N|} = \frac{q-1}{\log q},$$

using the formula (A) we find that

$$\begin{split} &B_{k,\chi}^*(q) - p^k[p]^{-1}\chi(p)B_{k,\chi}^*(q^p) \\ &= \lim_{N \to \infty} \frac{1}{[\bar{d}p^N]} \sum_{x_N=1}^{\bar{d}p^N} \chi(x_N)(x_N)^k q^{x_N} \\ &= \lim_{N \to \infty} \frac{1}{[\bar{d}p^N]} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^k q^{cx} \\ &\quad + k \frac{q-1}{\log q} \lim_{N \to \infty} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^{k-1} r_N(x) q^{cx} \\ &= \chi(c) c^{k+1} [c]^{-1} \lim_{N \to \infty} \frac{1}{[\bar{d}p^N; q^c]} \sum_{x=1}^{\bar{d}p^N} \chi(x) x^k (q^c)^x \\ &\quad + k \frac{q-1}{\log q} \lim_{N \to \infty} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^{k-1} r_N(x) q^{cx} \\ &= \chi(c) c^{k+1} [c]^{-1} \left\{ B_{k,\chi}^*(q^c) - p^k[p]^{-1} \chi(p) B_{k,\chi}(q^{pc}) \right\} \\ &\quad + k \frac{q-1}{\log q} \lim_{N \to \infty} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^{k-1} r_N(x) q^{cx}, \end{split}$$

that is, using (B) and the definition of the operators  $\chi^p$ ,  $\chi^c$  and  $\chi^p\chi^c$  given by (3.5) and (3.6) we have

$$\begin{split} &\lim_{N \to \infty} \sum_{x=1}^{\bar{d}p^N} \chi(cx)(cx)^{k-1} \left[ -\frac{cx}{\bar{d}p^N} \right]_q q^{cx} \\ &= \frac{1}{k} \frac{\log q}{q-1} \left\{ \left( B_{k,\chi}^*(q) - p^k[p]^{-1} \chi(p) B_{k,\chi}^*(q^p) \right) \\ &\qquad - \chi(c) c^{k+1} [c]^{-1} \left( B_{k,\chi}^*(q^c) - p^k[p]^{-1} \chi(p) B_{k,\chi}^*(q^{pc}) \right) \right\} \\ &= \frac{\log q}{q-1} (1-\chi^p) (1-c\chi^c) \frac{B_{k,\chi}^*(q)}{k}. \end{split}$$

This completes the proof.

Now, we will consider a q-analogue of Nasybullin's lemma (see [8, Theorem 1]; we follow the notation of [8]).

Let  $B_n^*(x;q)$  be the *n*th *q*-Bernoulli polynomials in (2.2). The *n*th *q*-Bernoulli functions  $P_n(x)$  are define by  $P_n(x) = P(x;q) = B_n^*(x;q)$  for  $0 \le x < 1$ . They are periodic with period 1 and agree with the *q*-Bernoulli polynomials  $B_n^*(x;q)$  in the interval  $0 \le x < 1$ .

By Lemma 2.4 we have

$$d^n[d]^{-1} \sum_{i=0}^{d-1} q^i B_n^* \left( \frac{x+i}{d}; q^d \right) = B_n^*(x;q).$$

Hence for any real number x

$$d^{n}[d]^{-1} \sum_{i=0}^{d-1} q^{i} P_{n}\left(\frac{x+i}{d}; q^{d}\right) = P_{n}(x; q).$$

From the above that the function  $P_n(x;q)$  satisfies the property of q-Nasybullin's lemma with constants  $A=d^{-n}[d],\ B=0$ . Then  $\rho\neq 0$  is equal to  $d^{-n}[d]$ , as  $\rho^2=A\rho+B\rho$  reduces simply to  $\rho^2=d^{-n}[d]\rho$ . Thus we define the function  $\mu_n=\mu_{n;q}$  on  $a+\bar{d}p^N\mathbb{Z}_p$  by

$$\mu_n(a+\bar{d}p^N\mathbb{Z}_p):=(\bar{d}p^N)^n[\bar{d}p^N]^{-1}q^aP_n\left(\frac{a}{\bar{d}p^N};q^{\bar{d}p^N}\right).$$

This can be extended to a measure on  $\lim_{N} (\mathbb{Z}/\bar{d}p^{N}\mathbb{Z})$  for  $N \geq 0$ .

Let  $\chi$  be a primitive Dirichlet character with conductor  $\bar{d}$ . Then the generalized q-Bernoulli number in (3.4) is defined by

$$B_{k,\chi}^*(q) = \lim_{N \to \infty} \frac{1}{[\bar{d}p^N]} \sum_{n=0}^{\bar{d}p^N-1} \chi(n) n^k q^n = \frac{\bar{d}^k}{[\bar{d}]} \sum_{n=0}^{\bar{d}-1} q^a \chi(a) B_k^* \left(\frac{a}{\bar{d}}; q^d\right).$$

Let

$$L(\mu_n, \chi) = \lim_{N \to \infty} \sum_{a=0}^{\bar{d}p^N - 1} \chi(a) \mu_n(a + \bar{d}p^N \mathbb{Z}_p)$$
$$= \lim_{N \to \infty} \sum_{\substack{a \pmod{\bar{d}p^N \\ (a,p)=1}}} \chi(a) \mu_n(a + \bar{d}p^N \mathbb{Z}_p),$$

where  $\sum^*$  means to take sums over the rational integers prime to p in the given range. Then since the character  $\chi$  is constant on  $a + \bar{d}\mathbb{Z}_p$ ,

$$L(\mu_n, \chi) = \lim_{N \to \infty} \sum_{\substack{a \pmod{\bar{d}p^N} \\ n \text{ od } \bar{d}p^N}} \chi(a)\mu_n(a + \bar{d}p^N \mathbb{Z}_p)$$
$$- \lim_{N \to \infty} \sum_{\substack{a \pmod{\bar{d}p^N} \\ p \mid a}} \chi(a)\mu_n(a + \bar{d}p^N \mathbb{Z}_p)$$
$$= B_{n,\chi}^*(q) - p^n[p]^{-1}\chi(p)B_{n,\chi}^*(q^p),$$

where  $B_{n,\chi}^*(q)$  is the *n*th *q*-Bernoulli number containing  $\chi$ . Thus we obtain

$$L(\mu_n, \chi \omega^{-n}) = B_{n, \chi \omega^{-n}}^*(q) - p^n[p]^{-1} \chi \omega^{-n}(p) B_{n, \chi \omega^{-n}}^*(q^p)$$

where  $n \geq 1$  and  $\omega$  is the Teichmüller character mod  $p^*$ .

## 4. $I_q$ -integral and Tsumura's p-adic function

Let  $z \in \mathbb{C}_p$  be such that  $z^{dp^N} \neq 1$  for all N. In [10], N. Koblitz defined

$$(4.1) E_z(a+dp^N\mathbb{Z}_p)=\frac{z^a}{1-z^{dp^N}}.$$

He obtained

PROPOSITION 4.1 ([10]).  $E_z$  is a distribution on X. Let  $D_1 = \{x \in \mathbb{C}_p \mid |x-1|_p < 1\}$ , and let  $\overline{D}_1 = \mathbb{C}_p \setminus D_1$  be the complement of the open unit disc around 1. Then  $E_z$  is a measure if and only if  $z \in \overline{D}_1$ .

Note that if  $q \in \overline{D}_1$  and  $\operatorname{ord}_p(1-q) \neq -\infty$ , then  $\mu_q(a+dp^N\mathbb{Z}_p) = (1-q)E_q(a+dp^N\mathbb{Z}_p)$ . Thus  $\mu_q(a+dp^N\mathbb{Z}_p) = \frac{q^a}{[dp^N]}$  in  $q \in \overline{D}_1$  and  $\operatorname{ord}_p(1-q) \neq -\infty$  is the similar measure as Koblitz measure.

Hereafter, we assume that  $q \in \overline{D}_1$  and  $\operatorname{ord}_p(1-q) \neq -\infty$ . Now, for  $t \in \mathbb{C}_p$  with  $\operatorname{ord}_p t > \frac{1}{p-1}$ , we define a number  $H_m^*(q)$  by

(4.2) 
$$\frac{q-1}{qe^t-1} = \sum_{m=0}^{\infty} H_m^*(q) \frac{t^m}{m!}.$$

Note that  $H_m^*(q^{-1}) = H_m(q)$  where the number  $H_m(q)$  defined by  $\frac{1-q}{e^t-q} = \sum_{m=0}^{\infty} \frac{H_m(q)}{m!} t^m$  is called the m-th Euler number belonging to q, which lies in an algebraic closure of  $\mathbb{Q}_p$ .

We can express the numbers  $H_m^*(q)$  as an integral over  $\mathbb{Z}_p$ , for  $d = 1, X = \mathbb{Z}_p$ , by using the measure  $\mu_q$ , that is,

(4.3) 
$$\int_{\mathbb{Z}_p} x^m d\mu_q(x) = H_m^*(q) \quad \text{for } m \ge 0.$$

Indeed, we find that

$$\int_{\mathbb{Z}_p} e^{tx} d\mu_q(x) = \lim_{N \to \infty} \frac{1 - q}{1 - q^{p^N}} \sum_{a=0}^{p^N - 1} e^{at} q^a$$

$$= \frac{1 - q}{1 - qe^t} \lim_{N \to \infty} \frac{1 - e^{tp^N} q^{p^N}}{1 - q^{p^N}} = \frac{q - 1}{qe^t - 1},$$

since  $e^{tp^N}$  approaches 1 as  $N \to \infty$ , the limit is 1. Let  $t \in \mathbb{C}_p$  with  $\operatorname{ord}_p t > \frac{1}{p-1}$ . Then we obtain

$$(4.4) \qquad \sum_{m=0}^{\infty} H_m^*(q) \frac{t^m}{m!} = \int_{\mathbb{Z}_p} e^{tx} d\mu_q(x) = \sum_{m=0}^{\infty} \int_{\mathbb{Z}_p} x^m d\mu_q(x) \frac{t^m}{m!}.$$

Hence, comparing the above formulas,  $\int_{\mathbb{Z}_p} x^m d\mu_q(x) = H_m^*(q)$  for  $m \geq 0$ . Note that if  $q \in D_1$  then  $\int_{\mathbb{Z}_p} x^m d\mu_q(x) = B_m^*(q)$  (see Section 2).

Let  $\omega$  denote the Teichmüller character mod  $p^*$ . For  $x \in X^*$ , we set  $\langle x \rangle = x/\omega(x)$ . For  $s \in \mathbb{Z}_p$ , we define

(4.5) 
$$\ell_{p,q}(s) \stackrel{\text{def}}{=} \lim_{N \to \infty} \frac{1 - q}{1 - q^{p^N}} \sum_{m=0}^{p^N - 1} \frac{q^m}{m^s}.$$

Then we obtain  $\ell_{p,q}(-k) = \lim_{N \to \infty} \frac{1-q}{1-q^{pN}} \sum_{m=0}^{p^N-1} q^m m^k = H_k^*(q)$  for k > 0.

Let  $\chi$  be a primitive Dirichlet character with conductor d. For  $k \geq 0$ , the generalized numbers  $H_{k,\chi}^*(q)$  is defined by

(4.6) 
$$H_{k,\chi}^*(q) = \int_X \chi(x) x^k d\mu_q(x).$$

For  $s \in \mathbb{Z}_p$ , we define the function  $\ell_{p,q}$  by

(4.7) 
$$\ell_{p,q}(s,\chi) = \int_{X^*} \langle x \rangle^{-s} \chi(x) d\mu_q(x)$$

which is slightly different from the one in [14]. The value of this function at non-positive integers are given by

PROPOSITION 4.2. For any  $k \ge 0$ , we have

$$\ell_{p,q}(-k,\chi\omega^k) = H_{k,\chi}^*(q) - p^k[p]^{-1}\chi(p)H_{k,\chi}^*(q^p).$$

*Proof.* Since  $\mu_q(pU) = \mu_{q^p}(U)$  for  $U \subset X$ ,  $\int_{pX} \chi(x) x^k d\mu_q(x) = [p]^{-1} \int_X \chi(px) (px)^k d\mu_{q^p}(x) = p^k[p]^{-1} \chi(p) H_{k,\chi}^*(q^p)$ . The proof now follows directly.

For  $\alpha, \beta \in \mathbb{C}_p$  and any function f(q), we set

$$(4.8) \qquad (\alpha + \beta p^k) \circledast f(q) := \alpha f(q) + \beta p^k f(q^p).$$

We have the following Kummer congruences.

COROLLARY 4.3. If  $k \equiv k' \pmod{(p-1)p^N}$ , then

$$(1 - \chi(p)p^k) \circledast \frac{H_{k,\chi}^*(q)}{1 - q} \equiv (1 - \chi(p)p^{k'}) \circledast \frac{H_{k',\chi}^*(q)}{1 - q} \pmod{p^N}.$$

*Proof.* Note that (see [10, Proposition 2])

$$\left|\frac{\mu_q(a+dp^N\mathbb{Z}_p)}{1-q}\right|_r = \left|\frac{q^a}{(1-q)[dp^N]}\right|_r = \left|\frac{q^a}{1-q^{dp^N}}\right|_r \le 1,$$

where we use the assumption  $q \in \overline{D}_1$ . By [12, Chapter II, §2], if  $k \equiv k' \pmod{(p-1)p^N}$ , then we have

$$|x^k-x^{k'}|_p \leq \frac{1}{p^N} \quad \text{for } x \in X^*.$$

Using the corollary at the end of [12, Chapter II, §5], we easily see that

$$\begin{split} \frac{\ell_{p,q}(-k,\chi\omega^k)}{1-q} &= \int_{X^*} \langle x \rangle^k \chi \omega^k(x) \, \frac{d\mu_q(x)}{1-q} \\ &= \int_{X^*} \chi(x) x^k \, \frac{d\mu_q(x)}{1-q} \\ &\equiv \int_{X^*} \chi(x) x^{k'} \, \frac{d\mu_q(x)}{1-q} \pmod{p^N} \\ &= \frac{\ell_{p,q}(-k',\chi\omega^{k'})}{1-q}. \end{split}$$

By Proposition 4.2 and (4.8), the result now follows easily.

REMARK. By the definition (2.2) and (4.2), we obtain that

$$\sum_{n=0}^{\infty} B_n^*(q) \frac{t^n}{n!} = \frac{q-1}{\log q} \left( \frac{\log q + t}{qe^t - 1} \right)$$

$$= \frac{q-1}{qe^t - 1} + \frac{t}{\log q} \frac{q-1}{qe^t - 1}$$

$$= \sum_{n=0}^{\infty} H_n^*(q) \frac{t^n}{n!} + \frac{t}{\log q} \sum_{n=0}^{\infty} H_n^*(q) \frac{t^n}{n!}.$$

Equating the coefficient of  $t^n$ , we obtain the following relation between the q-analogue Bernoulli numbers  $B^*(q)$  and the number  $H^*(q)$ 

$$B_n^*(q) = H_n^*(q) + \frac{n}{\log q} H_{n-1}^*(q) \quad (n \ge 1).$$

#### References

- L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
- [2] T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), 21-26.
- [3] \_\_\_\_\_, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), 73–86.

- [4] \_\_\_\_\_, On a q-analogue of the p-adic log gamma functions and related integral,
   J. Number Theory 76 (1999), 320-329.
- [5] \_\_\_\_\_\_, A note on p-adic Dedekind sums, Comptes Rendus De l'Academine Bulgare des Sciences (to appear)
- [6] \_\_\_\_\_, A note on the values of zeta, Notes Number Theory Discrete Math. (to appear)
- [7] T. Kim and H. S. Kim, Remark on p-adic q-Bernoulli numbers, Advanced Studies in Contemporary Math. 1 (1999), 127-136.
- [8] H. S. Kim, P.-S. Lim, and T. Kim, A remark on p-adic q-Bernoulli measure, Bull. Korean Math. Soc. 33 (1996), 39-44.
- [9] M.-S. Kim and J.-W. Son, On Bernoulli numbers, J. Korean Math. Soc. 37 (2000), 391-410.
- [10] N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), 455-468.
- [11] \_\_\_\_\_, On Carlitz's q-Bernoulli numbers, J. Number Theory 14 (1982), 332-
- [12] \_\_\_\_\_, p-adic Numbers, p-adic Analysis and Zeta-Functions, 2nd, Springer-Verlag, New York, 1984.
- [13] J. Satoh, q-analogue of Riemann's  $\zeta$ -function and q-Euler numbers, J. Number Theory **31** (1989), 346–362.
- [14] H. Tsumura, On a p-adic interpolation of the generalized Euler numbers and its applications, Tokyo J. Math. 10 (1987), 281-293.
- [15] \_\_\_\_\_\_, A note on q-analogues of the Dirichlet series and q-Bernoulli numbers,
   J. Number Theory 39 (1991), 251–256.
- [16] L. Washington, Introduction to Cyclotomic Fields, 2nd, Springer-Verlag, New York, 1997.

Department of Mathematics Kyungnam University Masan 631-701, Korea

E-mail: mskim@mail.kyungnam.ac.kr sonjin@hanma.kyungnam.ac.kr