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SOME REMARKS ON A ¢-ANALOGUE
OF BERNOULLI NUMBERS

Min-500 Kim AND JIN-WOO SON

ABSTRACT. Using the p-adic g-integral due to T. Kim [4], we de-
fine a number B} (q) and a polynomial B/ (x;q) which are p-adic
g-analogue of the ordinary Bernoulli number and Bernoulli polyno-
mial, respectively. We investigate some properties of these. Also,
we give slightly different construction of Tsumura’s p-adic function

£p(u, s, x) [14] using the p-adic g-integral in [4].

1. Introduction

Throughout this paper Z,,Q, and C, will respectively denote the
ring of p-adic integers, the field of p-adic numbers and the completion of
the algebraic closure of Q. Let | - |, be the p-adic valuation of C, such
that |p|, = p~ 1. If ¢ € C,, one normally assumes |q ~ 1, < p~ /(=1 g0
that ¢* = exp(zlogq) for |z|, < 1. We use the notation

1—g*

(11) o] = [oq] = T2

Hence, lim,_.,[z;q] = = for any x with |z|, < 1. Let UD(Z,) denote
the space of all uniformly (or strictly) differentiable C,-valued functions
on Zy. It is well-known that the Ip-integral of f € UD(Z,) exists and is
given by

pN -1

12 RN = [ f@du = Jm 3 fe)=g,
i z=0
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where g is the ordinary p-adic distribution defined by po(z +p™NZ,) =
Ezlv- The g-analogue of ug, denote by 1, defined by T. Kim [4] as follows:
Let d be a fixed integer and p be a fixed prime number. We set

X =lim(z/dp"Z), X*= |J a+dpZ,
N

0< a<d;
(1-3) (p)=t

a+dpZ, ={z € X |z =a (mod dp™)},
where a € Z with 0 < a < dp". For any positive integer N,

N g° g°
1.4 pola +dp"Z,) = =
(14) ol v [dp™] — [dpN;q]
is known as a distribution on X. In the case of d = 1, this distribution
yields an I -integral for f € UD(Z,)

1) L= [ f@due) = m S s
] =0

In particular, the relation between the Ip-integral and I,-integral is given

by
15) [ s =21 [ @) for f € UDE,)
Zy q Zy

We recall variant Bernoulli numbers given by below in the symbolic
form: Forn >0

1 f n=1

Bo=1, (B+1)"-B,=
o (B+1) g {0 if o> 1,

(Ordinary Bernoulli numbers)

. Bold)=1, q(qB(Q)+1)”—ﬁn(q)={

(Carlitz’s g-Bernoulli numbers (see [1]))

1 if n=1
0 if n>1,

qg—1 1 if n=1
Bolg) = , B(g)+1)" — B,(q) =
v B0=to @B+ -B@-{ o)
(Tsumura's g-Bernoulli numbers (see [15]))
1 if n=1
Bo(g) =0, B(g) + 1" — B.(q) =
. B0 oB@)+ =B ={ "

(Kim’s ¢-Bernoulli numbers (see [2], [9])).
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It is known that variant Bernoulli numbers are connected with the [j-
and I,-integral as follows: For n > 0

(1.6) Iy(z™) = / z"dug(z) = B, (Witt’s formula);
D 5l = [ e dug(e) = .(a) (see 1)

18)  Lgl]") = / 4" [2]"dpig(z) = Bu(a) (see [3]);

15 f -1

19 I [ T dgle) = B

N. Koblitz [11] constructed the p-adic g-L-series which interpolated
Carlitz's g-Bernoulli numbers 3, (g). J. Satoh [13] constructed the com-
plex ¢-L-series which interpolated Carlitz’s g-Bernoulli numbers 5, (q).
T. Kim [4] proved that Carlitz’s g-Bernoulli numbers 3, (¢q) can be repre-
sented as an integral by the g-analogue p, of the ordinary p-adic invari-
ant measure. In the complex case, H. Tsumura [15] studied a g-analogue
of the Dirichlet L-series which interpolated g-Bernoulli numbers By (q).
In the p-adic case, T. Kim [3] constructed the p-adic g-L-function using
the congruence on g-Bernoulli numbers B, (g).

In this paper, we consider a uniformly (strictly) differentiable function
f(z) = 2™ (n > 0) in the [,-integral given by (1.5) and put

B(g) = / 2dug(z): Bi(ziq) = / (& + )" dpg (1)

ZP
The purpose of this paper is to investigate the properties of a number
B! (q) and a polynomial B} (z;q). Also, we give slightly different con-
struction of Tsumura’s p-adic function #,(u,s,x) [14] using the p-adic
g-integral in [4].

y3

2. Another p-adic ¢g-Bernoulli number B(g) and its basic
properties

Set f(z) = 2™ € UD(Z,) for n > 0 in the equation (1.5).
Now, for any integer n > 0 we define a number B (g) and a polyno-
mial B} (z;q) in the variable z € C, with [z], < 1, respectively, by

ey B@Y [ s Biwo® [ @romdu.

r P
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The generating function, denote by G (t), of B}, (q) is given by

(22) Golt) = 107 (qet_1 ) —;Bn(mm.

Indeed, for f(z) = ¢%¢™ € UD(Z,) using the equation Iy(f1) =
Iy(f) + f/(0), where fi(z) = f(z+1) for all z € Z,, we have

logg+t
2.3 Iy (¢%e®) = =+ —,
(2.3) 0 (q € ) get — 1

From the formula (1.5"), we obtain

vy q—1 (logg+1 g—1 ot
Golt) = logq (qet—l) logg G
m o0 mn
(2.4) = Z (logq ) Zolq

= ZB:;(Q)—

We can easily prove the following.

PrROPOSITION 2.1. Forn > 0 and x € Zj,, we have
. . 0 o L ifn=1
0 ifn>1
(2) hmqﬁlB (Q) BTL:
(3) Br(w;q) = (B*(q) +2)" and lim,—1 B} (x;q) = Bp(z), where
B, (x) is the ordinary Bernoulli polynomial.

From Proposition 2.1 we may say that a number B;:(g) and a polyno-
mial B} (z;q) are another p-adic g-analogue of ordinary Bernoulli num-
ber and Bernowlli polynomial, respectively.

PrROPOSITION 2.2. Form, n > 0 and x € Z,, we have
(1) Tt q") = 89 (gm) = B2 B (o),

'-11 g-1

2) Le"g") =32, “"i? R (1))
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LEMMA 2.3. Forn >0

[ adinte) = [ adug(a)

'y

Proof. Note that du,(z) = (qlogl)qq dpo(z )for l1—gql, < p~Y/P=Y) (see

[4], [10]). It is well known that fz 2™ dpo(z) = [y 2™ duo(x) for n > 0
(cf. [4, Lemma 1]) and ¢ = > oo, —(%gi for I1—g|, < p~/®=1), The
result now follows easily. O

LeMMA 2.4. For any positive integer d and k > 0

d—1 .
e — L o 41 [
Bi(z;q) =d*[d ™" Y _¢'B} ( - ;q") :

Proof. By Lemma 2.3 we have

dp -1

k
B (z;q) = hm d—N] ;} g*(z +n)

d— 1p 1
I T i+dn
_J\}Lm [pN,q ZZq (z + i 4 dn)F
=0 n=0
d—1 PV -1 Tt k
— -1 k i 1:
S g iy T ()

1de Z/ ($+ +t) dppge (£)
= d’“[drldiquz (szH qd) .

i=0

This completes the proof. O
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THEOREM 2.5. For k 2> 0, let uj, = .. be define by
% r dcf T * a N
uila+dp™Z,) = (dpV)*[dp" ] ¢" By (W;qd" ) :
where N and d are positive integers. Then uj is a distribution on X.
Proof. Since ug., = pig which is a distribution on X (see [4]), for any

positive integer k we show that uj, is a distribution on X. For that, it is
suffices to check that

p—1
> il + idp™ + dpNt1Z)
=0
i a-i—zdp N+1
— (dp™ 1Y g apN T 12 jdp™ B ( = g% )

p—
- (de)kq“[de]'l{ ] Z (@%,(q@”)p)}
=(

= (dp™)*[dp™ ] q° B} (?algii; qde) (using Lemma 2.4)
— i+ dp™Z,).

This completes the proof. |
3. A generalized ¢-Bernoulli numbers B;‘X(q) and related
properties
Let x be a Dirichlet character with conductor d, where d is a positive

integer. For k > 0 we define the k-th generalized ¢g-Bernoulli number
belonging to the character x by

(3.1) B; () & /X x(2)5* dptg ().

Using a similar method used in the proof of Lemma 2.4, we may perform
the integral in the right hand side of (3.1) to get

d-1
(3:2) Bixl@) =4~ 3 ax() B (S5a).
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PROPOSITION 3.1. For k = 0, we have

1 [x x(w dp;i(z) = B, (9);
( Jox x(@)dpi; (x) = x(p)p*[p] ™" B; , (¢°);
(3) fXx Vg, e () = x(¢) By, (¢°);
@) [ox x(@)dui o (32) = x(e)x(p)p"[p) 7 B}, (¢7°)-

Proof. Using the definition of uj , given by Theorem 2.5 and the
formula, (3.2), the proofs are clear. J

COROLLARY 3.2. Fork >0
[ x@3* dua(o) = [ (o) dui o).
b's X
Proof. The definition of By, | (¢) and Proposition 3.1(1) imply

[ x(@a* dug(o) = [ (o) dui ).

This completes the proof. O

We set

. P ifp>2
(3.3) p ={

4 if p=2.

Let d = [d, p*] be the least common multiple of conductor d of x and p*.
By using the I -integral, we have the Witt’s type formula in the p-adic
cyclotomic field @, () as follows:

(3.4) B \(q) = lim Z x(z k>0.

For any rational integers s and ¢, let x® = x*%

f(q) as follows:

9 be an operator on

def g

(3.5) X°f(q) = s*[s] 7 x(s) £ (g°);
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(3.6) xixt sl 5] (3 0 x)

Now we choose a rational integer number ¢ such that (¢,d) = 1 and
¢ # *£1, and we put

c 1 Iqu * k — E 1
B7 u= Eg-1 (#k;q(U) — T e (EU)) , k21,

where U C X is compact open set. Then uf must be a distribution
on X (uf is not a measure on X) and, using Proposition 3.1 and the
definition of the operator x?, x° and xPx¢ given by (3.5) and (3.6), this
distribution yields an integral on X* = X — pX as follows:

L1 . B 1
- qu—g(i (/X X(x)dpusg () — Mg /X X(:C)d“km“(gx))
1

;1f ;Ofgi (/px X(@)dpgq () — e~ /px X(:c)d,u;;qc(zm))

10% : { (B (@) — p* [P "' x(P) Bi  (¢"))

— x(©) e ™ (B 4 (¢°) — p* [P x(p) By, (¢7°)) }

log g . o Bix(9)
q_—l(l-X A= ex)— —-

Hence we obtain

39 [ x@die) = 2210 ) - o) 2,

THEOREM 3.3. Fork > 1
dp™ .
) * o cT -
[ i) = Jim S x| o,
g

N
—r XD j— dp

* - . . .
where > means to take sums over the rational integers prime to p in

the given range, c is a rational integer number such that (¢,d) = 1 and
¢ # %1, and [], is Gauss’s symbol.
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Proof. From (3.8) we must show that

dp™

. * _ cr - lo B; (@)

lim E x(cx)(cz)* 1[—_—N—] g = ng(l— (1 —ex®) k’; .
g

N=oo z=1 dp

We can rewrite B,’c"’x(q), k > 1, given by (3.4) as

Bi 1 (9)
. .
= Nﬁm[dpzv E (z)2"¢" + lim —~—[ T Z x(py)(py)"¢*
= Z (@)z"*q® + p*[p] " x(0) Bf,  (47)-
=1
That is,
() Jm - dp Z x(@)a*q" = B . (a) = p*[p] " x(0) Bi 1 ()-

We choose a rational integer number ¢ such that (c,d) = 1 and ¢ # +1.
Let z and zx be the rational integers such that 1 € z,zy < dpV and
(z,p) = (zn,p) = 1, and determine a rational integer number ry(z) by
zy = cx +ry(z)dp, ie.,

cT N CcT
B o)==+ e = |~

where [], is Gauss’s symbol. Then we have

Z (zn)(@x)* g™

IN 1

= ; X(C$>{(C$)k+k(cg;)k~1 (TN(iII)d“pN) et (TN(CC)d—pN) k} [gpN]
J:DN* _— prN*

= %N] o=1 x(ex)(cz)* g™ + k% ;::1 x(cx)(cx)* try (z)g™
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Since

. o—1

rv(@)dp™ _ 1 for 11 — —1/(p— 1) i -
J\;I—Irnooq = Lfor [L—glp <p ]\;Enoo [dpN]  loggq’

using the formula (A) we find that
Bi x(a) — 2" 0] ™ x(0) B x (¢*)

dp™

1 . en
= Jm oy X xew)(en)a

= X(©F A7 Jim ,;]Z

1k i Z* x(cx)(cx)*try (x)g™
=1

= x(e)" e {Bk,x — P*lp] " x(P) Brx (47°) }

-1y " k-1 oz
+k10gq 1\}511%; x(ex)(cx)*  ry(z)g™,

that is, using (B) and the definition of the operators x?, x© and x*x¢
given by (3.5) and (3.6) we have

CZPN CT
Jim B x(em)(ex)™ [_W] g ¢~

=1

_ 1logg { (B x(a) — 2*[p] x(p) B; (¢"))

kq—l
X QFTA™ (Biy(e”) — 2] xlp) Bl () }

_logg ; o Bi (@)
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This completes the proof. (]

Now, we will consider a g-analogue of Nasybullin’s lemma (see |8,
Theorem 1]; we follow the notation of [8]).

Let B} (z;q) be the nth g-Bernoulli polynomials in (2.2). The nth
g-Bernoulli functions P, (z) are define by P,(z) = P(z;q) = B (z;q)
for 0 € z < 1. They are periodic with period 1 and agree with the
g-Bernoulli polynomials B} (x;q) in the interval 0 < z < 1.

By Lemma 2.4 we have

d=1

m - ik "17+7: *
e Yo (T het) = Biwo)

i=0)

Hence for any real number z

2 (:c+2 d) = P,(z;q).

From the above that the function P,(z;q) satisfies the property of g-
Nasybullin’s lemma With constants A = d™"[d], B = 0. Then p # 0 is
equal to d~"[d], as p? = Ap + Bp reduces simply to p? = d~"[d]p. Thus
we define the function p, = fin.q on a + dpVZ, by

— — - 3. N
pnla +dp™Zp) = (dp™) [dp™ ] " Py (d a7 )

This can be extended to a measure on lim y (Z/dp™Z) for N =0.
Let x be a primitive Dirichlet character with conductor d. Then the
generalized ¢-Bernoulli number in (3.4) is defined by

JpN—l
4,_ 1 k n _
Bixla) = B oo ;0 x(n ;q x(@)B; (347)
Let
d_pN-—#il.
Lipn,x) = lim > x(a)un(a + dpVZy)
a=0
= valixloo Z X(a)/ln(a + Cz—pNZp)a
a (mod dp™)

(a,p)=1
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where 3" means to take sums over the rational integers prime to p in
the given range. Then since the character x is constant on a + dZ,,

Ljtn, x) = A}E}lw Z x(a)pn(a + JPNZp)
a (mod dp™)

. TN
_ ]\;Enoo Z_ x(a)pin(a + dp™ Zp)
a (mod dp™)

pla
= B* —p [p (qp)7

where B}, (g) is the nth g-Bernoulli number containing x. Thus we
obtain

L (piny xw™™) = By, 1 oen (@) — 2" 0] " xw ™ (0) B}, -n (47)

where n > 1 and w is the Teichmiiller character mod p*.

4. I,-integral and Tsumura’s p-adic function

Let z € C,, be such that 2" £ 1 forall N. In [10], N. Koblitz defined

ZCL

N _
(4.1) Ez(a + dp Zp) = W‘

He obtained

PrOPOSITION 4.1 ([10]). E, is a distribution on X. Let Dy = {z €
C, | |z — 1|, < 1}, and let D1 = C,\D1 be the complement of the open
unit disc around 1. Then FE, is a measure if and only if z € Di.

Note that if ¢ € Dy and ord,(1 — q) # —oo, then pgla + dpNZy,) =
(1 - q)E,(a + dpVZ,). Thus u,(a + dp™¥Z,) = W in g € Dy and
ord,(1 — q) # —oo is the similar measure as Koblitz measure.

Hereafter, we assume that ¢ € D1 and ord, (1 — ¢) # —oc.

Now, for t € C, with ord,t > ﬁ, we define a number H;, (q) by

(4.2) e 1 Z
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Note that HY (¢7') = H,.(¢) where the number H,,(q) defined by
elt__qq =3 s H’—,;‘,L(!q—)tm is called the m-th Euler number belonging to g,
which lies in an algebraic closure of Q.

We can express the numbers H;, (¢) as an integral over Z,, for d =

1, X = Zj, by using the measure y,, that is,

(4.3) / z™dpy(x) = H,(q) form = 0.

£

Indeed, we find that

ta: : _ at .a
e dug(xr) = lim
_1-g i l—etqupNz g—1
1~-get N—eo 1—¢gp¥ qet — 1’

since e approaches 1 as N — oo, the limit is 1. Let ¢t € C, with
ord,t > E%T‘ Then we obtain

-~ tm > ™
4.4 H (9)— =/ eCdug(z) = / 2y (z)—.
40 D@ = e = X [ et

Hence, comparing the above formulas, f;zp z™dug(z) = HY, (¢) form > 0.
Note that if ¢ € D; then pr z™dug(z) = B (q) (see Section 2).
Let w denote the Teichmiiller character mod p*. For x € X*, we set
() = z/w(z). For s € Zy,, we define

1—g ’&m
def . — qr
(45) ep,'-’](‘s) - 1\}1—I~noo 1 _ qu e~ ms’
Then we obtain £, ,(—k) = limy .00 li% ZﬁzN;Ol g™mF = H}(q) for
k> 0.
Let x be a primitive Dirichlet character with conductor d. For & > 0,
the generalized numbers Hy _ (g) is defined by

(46) H; (g) = /X X (@) g (z).
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For s € Zjp, we define the function £, ; by

(47 bpals0 = [ @) x(&)dua(a)

which is slightly different from the one in [14]. The value of this function
at non-positive integers are given by

PrROPOSITION 4.2. For any k > 0, we have

Cpq(—k, xw®) = Hy (@) — p" o] x(0)H;, , (¢").

Proof. Since pg(pU) = pgr(U) for U C X, [ 5 x(x)z*duq(z) =

]~ [ x(02)(pz)* dpigr (x) = p*[p] X (p)Hf , (7). The proof now fol-
lows directly. O

For a, 8 € C, and any function f(g), we set
(4.8) (. + BP") ® f(q) = af(a) + Bp" f(gP).
We have the following Kummer congruences.
COROLLARY 4.3. Ifk =k (mod (p— 1)p"), then

Hi (q) Hy . (g)

1= x@p") ® 2= = (1L-x@p) @ % = (mod pY).
Proof. Note that (see [10, Proposition 2])
pola+dp™Zp)| _ \ ¢ _ ’ i
1-¢ |, [A=-9ld™][, [1-¢%"[, 77

where we use the assumption g € D;. By [12, Chapter 11, §2], if k = ¥’
(mod (p — 1)p?), then we have
k K 1 =
|z — @ IPSP—N forz e X™.
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Using the corollary at the end of [12, Chapter II, §5], we easily see that

. k
ep,q(l ﬁ,;cw ) :/*($>kxwk(x) _dl“q_(z)

=/ X(JZ)ZBA Nq( )

l-g
= / ) x(z)z* %l (mod p™)

z Equ(—k’,xwk')
1—gq |

By Proposition 4.2 and (4.8), the result now follows easily. O

REMARK. By the definition (2.2) and (4.2), we obtain that

., " g—1[logg+t
2 Bi@oy =1 < et — 1
o q-1 t g-1
_qet—l logqqet—l
- t"
_ ( H* L
ZH * fogg 2 T

Equating the coeflicient of ¢, we obtain the following relation between
the g-analogue Bernoulli numbers B*(g) and the number H*(q)

n

B (q) = H;(q) + @

Hy 1(g) (n21).
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