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ANALYTIC PROPERTIES OF THE ¢-VOLKENBORN
INTEGRAL ON THE RING OF p-ADIC INTEGERS

MiN-Soo KiM AND JIN-WO0O SON

ABSTRACT. In this paper, we consider the g-Volkenborn integral of uni-
formly differentiable functions on the p-adic integer ring. By using this in-
tegral, we obtain the generating functions of twisted g-generalized Bernou-
1li numbers and polynomials. We find some properties of these numbers
and polynomials.

1. Introduction

Let p be an odd prime. Z,, Q, and C, will always denote, respectively,
the ring of p-adic integers, the field of p-adic numbers and the completion of
the algebraic closure of Q,. Let v, : C, — QU {co} (Q the field of rational
numbers) will denote the p-adic valuation of C, normalized so that v,(p) = 1.
The absolute value on C, will be denoted as |- |,, and |z|, = p~*»(® for
reCy Welet Z) = {x €Z, | 1/x € Zy}. A p-adic integer in Z, is sometimes
called a p-adic unit. Let UD(Z,,C,) denote the space of all uniformly (or
strictly) differentiable C,-valued functions on Z,. For each integer N > 0, Cp,v
will denote the multiplicative group of the primitive p’¥-th roots of unity in
C; =Cp\{0}. Set T, = {w € Cp | w?" =1 for some N > 0} = Upso Cpr-
The dual of Z,, in the sense of p-adic Pontrjagin duality, is T, = Cpe, the
direct limit (under inclusion) of cyclic groups C,~ of order p™¥ (N > 0), with
the discrete topology. T,, admits a natural Z,-module structure which we shall
write exponentially, viz w* for w € T, and z € Z,. T, can be embedded
discretely in C, as the multiplicative p-torsion subgroup and we now choose,
for once and all, one such embedding. If w € T,, then we denote by

(1.1) bu : (Z,+) — (Cp, )

for the locally constant character z — w®, which is locally analytic character if
w € {w € Cp | vp(w—1) > 0}. Then ¢, has continuation to a continuous group
homomorphism from (Zy, +) to (C,-) (see [24]).
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The indefinite sum operator S is defined by Sf(0) = 0 and Sf(n) =
Z;:Ol f(3) for n > 1. Tt is well known that for f € UD(Z,,C,), its Volkenborn
integral is defined to be the limit of average

N
17 Sf(pN) — 5£(0)
= 3 fl@)= %__
p
as N — oo (see [2], [19], [22]). We see that the uniform differentiability guar-
antees the existence of limits. Write down this integral as

p—l

12 1= [ fe)d= Jim me) (570 €@,

(see [7] and [19] for more details). For f € U D(Zp, C,), the Ip-Fourier transform
of f is the function f: T, — C, defined by

(1.3) fo=Io(fé,) for allw e T,.

This can be found in [24, Definition 3.1]. In fact we can extend f to {a € C, |
vp(a — 1) > 0} by same formula, where it turns out to be an analytic function
whose Taylor expansion has logarithmic growth (see [24, Proposition 5.3]). The
analogue with the classical (complex) theory is substantially complicated by the
absence of a p-adic valued Haar measure on Z,. So, C. F. Woodcock had to do
various attempts to construct a satisfactory analogue of integral analysis for
the spaces of functions on Z,. One, in [23] and [24], can find the fully detailed
study of the Ip-Fourier transform on the space of all uniformly differentiable
functions f : Z, — C,.

The g-extension of the Iy-Fourier transform has been constructed by T. Kim
(11}, called the I,-Fourier transform. The I -Fourier transform has the form

(1.4) (fu)g=Io(fdn) forallwe T,

see Section 2, Eq. (2.1).
For any integer n > 1, we shall use the following standard notation

- ¢" —1 — n—1 —
g =" -7 =1ta++¢"7 [0, =0
As ¢ — 1,[n]; — n, and this is the hallmark of a g-extension: the limit as
g — 1 recovers the classical object. If ¢ € C, one normally assume that |q| < 1.
If ¢ € C,, then we assume that |[¢ — 1|, < p~2/(P=1) 50 that ¢* = exp(zlogq)
for z € Zyp. For N > 1, the g-extension p, (originally introduced by T. Kim
[6]) of the p-adic Haar distribution ppaar

(1.5) pqla+pNZp) =
[PN lq

is known as a distribution on Z,, where pigas(a +0VNZ,) = ;1N and a+pVZ, =
{x € Qp | |lz—alp < p~N}. Note that limy_1 f1g = KHaar- We shall write du,(z)
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to remind ourselves that x is the variable of integration. This distribution p,
yields an I -integral for f € UD(Z,,C,) :

(1.6) Iq(f)z/Z f(@)dpq(z) = [pN Z flz

The I -integral for f € UD(Z,,C,) was defined by T. Kim ([6], 7], [8], [10],
(11]) and basic properties were studied by many authors. Also, by (1.2) and
(1.6), it is well-known that the numbers B, 8,(¢) and B,(q) are connected
with Ip-integrals and I, —integrals as follows.

e For any n > 0, Iy(z fZ z"dr = B,, where B, is the ordinary
Bernoulli numbers (see [19], [22})

e For any n > 0, I,( fZ x]Pdpg(x) = Bn(q), where B,(g) is the
Carlitz’s g- Bernoulh numbers (see (6], [7], 8], [9], [11] [12]);

e For any n > 0, I( fZ z"dpq(z) = Byn(q), where By(q) is the

modified Bernoulli numbers (see (3], [4])-

In this paper, we consider the ¢g-Volkenborn integral of uniformly differen-
tiable functions on Z,. By using this integral, we obtain the generating func-
tions of twisted g-generalized Bernoulli numbers and polynomials. We find
some properties of these numbers and polynomials.

2. The g-extension of the Ij-integral transform and related
numbers and polynomials

Given w € T, we will denote by ¢, : Z, — Cp,z — w?, the locally constant
extension of the power function from Z to Z,. In {11], the I-Fourier transform
for f € UD(Zy,C,) is the function I,(f) : T, — C, defined by

p~1

(2'1) (f¢w) = Neeo Z ¢w

This is an g-extension of the Iy-Fourier transform (1.3), that is, the Jo-Fourier
transform of f is the case ¢ — 1 of I;(f¢,) in (2.1). In terms of integration,
one can have the integral form

(2:2) I(fou) / o (@) f(z) dug(x), w € Tp.
Also its inverse I -Fourier transform is seem to be equivalent to the limit
logg ..
(23) f(@)q® = -1 1\}13100 Z b1 (2) I (fdw)
weC N

for all x € Z,, (see [11]).
Note that the distribution g on Z, has the property

tqlap + pN+IZp) = [P];luqv (a+ pNZp)
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followed trivially from the definition (1.5). Since Z; = Zp\PZyp, this implies
that for any f € UD(Z,,Cy) on Zy

(2.4) /%(fﬂ 2)dig(2) = I(féu) — b5 Tor ( (p2) ).

In the following proposition we obtain the shift versus integration of the
I,-Fourier transform for uniformly differentiable functions on Z,.

Proposition 2.1. Let f be a uniformly differentiable function on Z,. For some
fizred s € Zy and w € T,

L(f(e +5+1)ds) - wiqfq<f(x 1 8)gu) =

L (1/(5) + (5)oga).

Proof. From the definition (2.1), it is easy to see that

walogg / 60(2)f (@ + 5+ 1)duq(2)
P NY £(pN N _
_ngnoop zz% (@) f(z + 8)g" + im P )f p—;s)q” f(S).

It is easy to check that a uniformly differentiable function ¢, (z)f(z + s)¢® on
x € Zy can be differentiated in the usual way:

}\}mo ¢w(pN)f(pr"'I'vs)qp — f(s) = f'(s) + f(s)logq for s€Z,.
pN —

The result now follows easily. O

Corollary 2.2. 1. Suppose that w € T,,. Let I,(e**@,,) be a power series about
the origin as follows

I(e#e) = 3 @@ ¢ ¢

!
— K

where [tl, < p~/®=V and t # 0 € C,. Then the coefficients of expansion
{Bk(q,w)} can be written by

Bi(g,w) = I,(z"¢.)
:{W‘l 1 (Hk( )+loquk 1( ))a kaz]-

=, if k=0.

Here the generalized k-th Euler number Hy(u) attached to an algebraic u # 1
has been defined by Frobenius (1910): (1 — u)/(e! —u) = Y 7o o Hr{u)t® /k!.
2. Forwe T, and k > 0,

I(@*6.) = 3 (¢* —1)1(() w>=[,£—]i—w,

i=0
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where [klgw = (wg® —1)/(¢— 1) and (%) = sle=l) ==  Aforeover, the

2!
sequence {q*} can be extended to a locally analytic function ¢* for x € Z,.

We define now the generating function of a new Bernoulli numbers by I;-
Fourier transform. The twisted g-extension of Bernoulli numbers is define by

tw, y_ 94— 1t+logg
(2.5) Iq(e ¢‘”)_@wqet~1 Zqu, k,a we Ty

for |t|, < p~Y/®=1 If ¢ — 1, then from application of L'Hospital’s rule the
expression (2.5) is reduced to

t
wet — 17
The exciting properties of this formula were shown by T. Kim (see [5]) and C.
F. Woodcock ([23, Proposition 7.1 (i)] and [24]). If w = 1, then

g—1t+logqg < tk
Iq(etx> —_ e 20— ZBk(q’l)_]{T‘-’
k=0

lini I,(e%¢,) = we T,y
q—)

logg get —1
where [t], < p~ /=1 (cf. [1], (3], [4], [9], [10], [12], (16], [20]).
Corollary 2.3. Let w € T, withw®™ =1, w # 1 for N > 1. Set

hmI (e ¢,) ZBk (1,w)t* /K.
Then
N-—1
Bi(1,w) = N*= 1ZaﬂBk )
=0
where By(-) is the usual Bernoulli polynomials and k > 1.

Corollary 2.4. Let k > 0. Then

L %qzxk = EwETp,w;él ¢w_1(x)Bk(q7w) + Bk(qv ]-)

—1 _(k+Dzx _ k41 k+1
2. gtV = e, wp 0 (2) e il,n T rdlen

Proof. From (2.3) and Corollary 2.2, the series

Z ¢w“1 :I: ¢w)

wEC N

converges uniformly to —qi’lqza: as N — oo. So Part 1 follows directly. Part 2
follows by a similar method of Part 1. O

In Part 1 and Part 2 of Corollary 2.4, putting k = 0, we obtain the integral

series expansion
B (
Z © wq wg—1
w€eTy

log q
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whence, for x = 0 in the above, we have Eé_q = ZweT 7 q —— for ¢ # 1. This

formula gives an explicit expression for loéq in terms of ;qj- (see [23, p. 692)).

Now we consider the recursion formula for the sequence of numbers {B(g,w)}
From Proposition 2.1 we obtain the difference formula

-1
wq log q

where fi(x) = f(z + 1). From this expression, when f(z) = z* for k > 0, we
easily deduce that

I (f1¢w) - _I (f¢w) =

(f'(0) + f(0)log g),

=2 k=
1 wq—ﬂ 3
(2.6) Iz +1*0) = - L(400) = § g k=1,
0, k

We expand the left-hand side of Equation (2.6) by the binomial theorem. It
may be stated as

k
k i
27) I(+ 14, =3 (Z> /Z b0 (2)7'djig ().
1=0 ‘P
From (2.5), (2.7) and Part 1 of Corollary 2.2, we derive

I((z + 1)) — wiqfq(x%)

(2.8) —Z ( )Bz'(q,w) - wiqu(q,w)
_{%—Bo(q, w), k=0,
21:0 ( )B (q’ )+ _q_—Bk(qvw)a k Z 1.

As a consequence of the above formulae (2.6) and (2.8) we deduce the recurrence
relation for the sequence of numbers {B(q,w)} as follows

Proposition 2.5. The numbers {By(q,w)} satisfies

3 1 o) = 1 _ wq
By(gq,w) = oo’ Bi(q,w) Mwlogg [lgw(wg—1)
and
k—
Bu(g.w) Z( )B(q, fork > 2.
i=0
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3. Twisted p-adic g-L-functions
Let d be a fixed integer and p be a fixed prime number. We set

X =1lim(Z/dp"Z), X*= |J) a+dpzZ,,

N
(3.1) Tasdr

a+dp"Z,={z€X|r=a (moddp™)},

where a € Z with 0 < a < dp". Let D = {g € C, | |¢— 1|, < 1}, and let
D= Cp\D be the complement of the open unit disc around 1. Note that if
g € D and ord,(1 — q) # —oo0, then ug(a+dp™Z,) = Td—r%ﬂ is the measure (cf.
[7]). Hereafter, we assume that ¢ € D and ord,(1 — q) # —oo.

Let x be a primitive Dirichlet character with conductor d. Defining the
generalized numbers of By(q,w) by the formula

Byx(g,w)
(3.2) . k- x(a dm q°(t + log g)e™®
= k! coefficient of t° in logq Z )
Thus we deduce the integral of the generalized numbers
(3.3) By (g,w / do(@)x(@)7*dtg(z) for k > 0.
To see that (3.3) follows from
zk t*
(3.4) / Pu(@)x(2)e™ dprg(x Z / S (2)x(2)2" dpg(2) 17,
we note
[RECHEERS
de
. q— 1 1 tr x
= Togq AT ¥ Zx(xm(w)e g
g‘ -1 P
— a ta tdx dz
= ZX ¢w 1qud N—>oo pN ZZO ¢wd x)e
— IZX(G ¢w(a a ta/ ¢ tdmdﬁ%d(ﬂ?)
a=]
¢ —1 5 x(a)du(a)g®(t +logg)e
= by (2.5)).
long qedt__l (Y( 5))
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Proposition 3.1. Let x be a primitive Dirichlet character with conductor d
and x € Zy. Then

q— 1 T k
- . 1
ogg " x(z)z wETE w#m 1(#)Biex(¢,w) + Brx(2,1)

for k> 0.

Let p be odd rational prime and let w, : X* — X be the function defined
by (see [2], [15], [19], [22])

— ; "
wp(x) = lim ¥ .
p—adically

The function w,, is called the Teichmiiller character, and it appears quite fre-
quently in many different guises. For s € Z, and w € T}, we define

1 T 1-s
(3.5)  Lpg(s,x,w)= lim o (z)x(z (——) .
pa(s, X, w) = lim [dequ\;,;N_l HONOIows
(pa)=1

For k > 0, we set x5 = xw,*. Since pg(pU) = [p]; pge(U) for U C X, the
value of the function L, 4(s, x,w) at non-positive integers are given by

(36) Lp,q(l - ka X w) = Bk,Xk (qv UJ) - pk [p]JIXk(p)Bk:,Xk (qp’ wp)

for k£ > 1. We thus obtain the following

Theorem 3.2. Let x be a primitive Dirichlet character with conductor d
and s € Zp,w € Tp. Then the function Ly 4(s, x,w) interpolates the values

Bk,Xk (Qa w) *pk[p](Tle(p)Bk,Xk (qp’wp) when s =1~k fork > 1.

For g € D, we have

a

Nq(a + dPNZp)
1—¢

- [a=dm, = [
p 1A =@dpN]|, |1—q®" |, ~

By [13, p. 31, Eq. (3.4)], if k = k&’ (mod (p—1)p”), then we obtain the assertion
that

k k' *
lx -z ]prN—H forr € X*.
Using the corollary at the end of [14, Chapter II, §5] and (3.5), their integrals
over the compact set X ™ are also close together, and in fact, it is easy to see
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that for £ > 1
(1= q) " Ly g1 =k, x—ksw)

k
1 x
lim ——— Z qmqﬁw(w)xwk(x)( )
- _ qdpN p
NS l—g e wp(x)
(p,x)=1

[ x@)patye 2o

1—g¢

= [ x@pute)e Lo moa pNe
X~ 1—g¢

= (1 =) L1 = k', x5 ).

1)

Hence we can prove the following congruence.

Theorem 3.3. Let x be a primitive Dirichlet character with conductor d, and
let k=& (mod (p—1)p") and w € T,. Then

(1- q)_le,q(l —k,X-kw)=(1— q)_leyq(l — k' x_k,w) (mod pN+1).

Finally, we shall also want to consider modified twisted L-functions in the
complex field C. Let ¢ € C with 0 < |g| < 1, and let s € C with Re(s) > 1. We
set

3.7 Lo(sw) = 172 i wrg'x(n) gt i wq"x(n)
' a\& X W)= 1-s —~ ns—1 log ¢ — ns ’

the series being absolutely convergent (cf. [3], [4], [6], [9], [12], [17], [18], [21]).
In particular, if we replace s by 1 — k, one then sees easily that

Lq(l_k7Xaw)
_q_l - n_ n q—l -1
——k—zwqx(n qux
n=1
k 'S}
_q—l _d_ n T nt ", N
S (dt> (;wqx 1og Zw e )|

We counsider the function

0,0 = (1- Y wrgmert + LD S gy et
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Since x is a character mod d we rearrange the terms in the series for ¥ (t)
according to the residue classes mod d. Then we have

I — _ a+bd a-l—bd (a+bd)t
(0= (a-9+ 522 )ZZ (o + bae

a=15=0
Z x(a)w?q®(t + log q)et®
logq gdedt — 1 ’

which is equal to the formula in (3.2). We will apply the recipe above. Then
we see that for k£ > 1

k
(35) Lol1 = ko) = = () ()

Comparing (3.2) and (3.8), we arrive at the following

t=0

Proposition 3.4. Let x be a primitive Dirichlet character with conductor d,
and let ¢ € C with 0 < |q| < 1. Then

1
Ly(1 -k, x,w)= _EBk,x(q’ w) fork>1.
Let Q be an algebraic closure of Q. Using (3.6) and Proposition 3.4 we have
L,,(1—k,x,w _
LnallZB00) _ 11k, ) = 2Tl a0 D (1 K )

for k > 1. Here the right-hand side is the value of the complex L-function which
the left-hand side is the values of the p-adic L-function and the value are equal
in the field Q common to C, and C.

Theorem 3.5. Let w € T, and g € D with ord,(1 — q) # —oo. Let wy, be the
Teichmiiller character. For x a primitive Dirichlet character with conductor d,
the function from Z, \ {1} to C,

Lp’q(S,X,UJ) - 1 lim 1 Z qu (.’E) (m) T 1—s
s—1  s—1N>o [dpV], . T Pul®)X w(z)
0<Lz<dp™ -1
(p,m)=1
interpolates the values Lq(1 — k, xx,w) — p¥[p]7 xk () Lgr (1 — k, X, wP) when
s=1-k.
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