ANALYTIC PROPERTIES OF THE q-VOLKENBORN INTEGRAL ON THE RING OF p-ADIC INTEGERS

MIN-SOO KIM AND JIN-WOO SON

ABSTRACT. In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on the p-adic integer ring. By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.

1. Introduction

Let p be an odd prime. \mathbb{Z}_p , \mathbb{Q}_p and \mathbb{C}_p will always denote, respectively, the ring of p-adic integers, the field of p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_p . Let $v_p:\mathbb{C}_p\to\mathbb{Q}\cup\{\infty\}$ (\mathbb{Q} the field of rational numbers) will denote the p-adic valuation of \mathbb{C}_p normalized so that $v_p(p)=1$. The absolute value on \mathbb{C}_p will be denoted as $|\cdot|_p$, and $|x|_p=p^{-v_p(x)}$ for $x\in\mathbb{C}_p$. We let $\mathbb{Z}_p^\times=\{x\in\mathbb{Z}_p\mid 1/x\in\mathbb{Z}_p\}$. A p-adic integer in \mathbb{Z}_p^\times is sometimes called a p-adic unit. Let $UD(\mathbb{Z}_p,\mathbb{C}_p)$ denote the space of all uniformly (or strictly) differentiable \mathbb{C}_p -valued functions on \mathbb{Z}_p . For each integer $N\geq 0$, C_p^N will denote the multiplicative group of the primitive p^N -th roots of unity in $\mathbb{C}_p^*=\mathbb{C}_p\setminus\{0\}$. Set $\mathbf{T}_p=\{\omega\in\mathbb{C}_p\mid\omega^{p^N}=1\text{ for some }N\geq 0\}=\bigcup_{N\geq 0}C_{p^N}$. The dual of \mathbb{Z}_p , in the sense of p-adic Pontrjagin duality, is $\mathbf{T}_p=C_p^\infty$, the direct limit (under inclusion) of cyclic groups C_p^N of order $p^N(N\geq 0)$, with the discrete topology. \mathbf{T}_p admits a natural \mathbb{Z}_p -module structure which we shall write exponentially, viz ω^x for $\omega\in\mathbf{T}_p$ and $x\in\mathbb{Z}_p$. \mathbf{T}_p can be embedded discretely in \mathbb{C}_p as the multiplicative p-torsion subgroup and we now choose, for once and all, one such embedding. If $\omega\in\mathbf{T}_p$, then we denote by

$$\phi_{\omega}: (\mathbb{Z}, +) \longrightarrow (\mathbb{C}_{n}^{\times}, \cdot)$$

for the locally constant character $x \mapsto \omega^x$, which is locally analytic character if $\omega \in \{\omega \in \mathbb{C}_p \mid v_p(\omega - 1) > 0\}$. Then ϕ_ω has continuation to a continuous group homomorphism from $(\mathbb{Z}_p, +)$ to $(\mathbb{C}_p^{\times}, \cdot)$ (see [24]).

Received February 14, 2005.

 $^{2000\} Mathematics\ Subject\ Classification.\ 11E95,\ 11S80.$

Key words and phrases. q-Volkenborn integral, I_q -Fourier transforms.

This work is supported by Kyungnam University Research Fund. 2006.

The indefinite sum operator S is defined by Sf(0) = 0 and $Sf(n) = \sum_{i=0}^{n-1} f(i)$ for $n \ge 1$. It is well known that for $f \in UD(\mathbb{Z}_p, \mathbb{C}_p)$, its Volkenborn integral is defined to be the limit of average

$$\frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x) = \frac{Sf(p^N) - Sf(0)}{p^N}$$

as $N \to \infty$ (see [2], [19], [22]). We see that the uniform differentiability guarantees the existence of limits. Write down this integral as

(1.2)
$$I_0(f) = \int_{\mathbb{Z}_p} f(x) \, dx = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N - 1} f(x) = (Sf)'(0) \in \mathbb{Q}_p$$

(see [7] and [19] for more details). For $f \in UD(\mathbb{Z}_p, \mathbb{C}_p)$, the I_0 -Fourier transform of f is the function $\hat{f} : \mathbf{T}_p \to \mathbb{C}_p$ defined by

(1.3)
$$\widehat{f}_{\omega} = I_0(f\phi_{\omega}) \quad \text{for all } \omega \in \mathbf{T}_{p}.$$

This can be found in [24, Definition 3.1]. In fact we can extend \widehat{f} to $\{\alpha \in \mathbb{C}_p \mid v_p(\alpha-1)>0\}$ by same formula, where it turns out to be an analytic function whose Taylor expansion has logarithmic growth (see [24, Proposition 5.3]). The analogue with the classical (complex) theory is substantially complicated by the absence of a p-adic valued Haar measure on \mathbb{Z}_p . So, C. F. Woodcock had to do various attempts to construct a satisfactory analogue of integral analysis for the spaces of functions on \mathbb{Z}_p . One, in [23] and [24], can find the fully detailed study of the I_0 -Fourier transform on the space of all uniformly differentiable functions $f:\mathbb{Z}_p\to\mathbb{C}_p$.

The q-extension of the I_0 -Fourier transform has been constructed by T. Kim [11], called the I_q -Fourier transform. The I_q -Fourier transform has the form

(1.4)
$$(\widehat{f}_{\omega})_q = I_q(f\phi_{\omega}) \quad \text{for all } \omega \in \mathbf{T}_p,$$

see Section 2, Eq. (2.1).

For any integer $n \geq 1$, we shall use the following standard notation

$$[n]_q = \frac{q^n - 1}{q - 1} = 1 + q + \dots + q^{n-1}, \quad [0]_q = 0.$$

As $q \to 1$, $[n]_q \to n$, and this is the hallmark of a q-extension: the limit as $q \to 1$ recovers the classical object. If $q \in \mathbb{C}$, one normally assume that |q| < 1. If $q \in \mathbb{C}_p$, then we assume that $|q-1|_p < p^{-1/(p-1)}$, so that $q^x = \exp(x \log q)$ for $x \in \mathbb{Z}_p$. For $N \ge 1$, the q-extension μ_q (originally introduced by T. Kim [6]) of the p-adic Haar distribution μ_{Haar}

(1.5)
$$\mu_q(a+p^N\mathbb{Z}_p) = \frac{q^a}{[p^N]_q}$$

is known as a distribution on \mathbb{Z}_p , where $\mu_{\text{Haar}}(a+p^N\mathbb{Z}_p)=\frac{1}{p^N}$ and $a+p^N\mathbb{Z}_p=\{x\in\mathbb{Q}_p\mid |x-a|_p\leq p^{-N}\}$. Note that $\lim_{q\to 1}\mu_q=\mu_{\text{Haar}}$. We shall write $d\mu_q(x)$

to remind ourselves that x is the variable of integration. This distribution μ_q yields an I_q -integral for $f \in UD(\mathbb{Z}_p, \mathbb{C}_p)$:

(1.6)
$$I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N - 1} f(x) q^x.$$

The I_q -integral for $f \in UD(\mathbb{Z}_p, \mathbb{C}_p)$ was defined by T. Kim ([6], [7], [8], [10], [11]) and basic properties were studied by many authors. Also, by (1.2) and (1.6), it is well-known that the numbers B_n , $\beta_n(q)$ and $B_n(q)$ are connected with I_0 -integrals and I_q -integrals as follows.

- For any $n \geq 0$, $I_0(x^n) = \int_{\mathbb{Z}_n} x^n dx = B_n$, where B_n is the ordinary Bernoulli numbers (see [19], [22]);
- For any $n \geq 0$, $I_q([x]_q^n) = \int_{\mathbb{Z}_n} [x]_q^n d\mu_q(x) = \beta_n(q)$, where $\beta_n(q)$ is the
- Carlitz's q-Bernoulli numbers (see [6], [7], [8], [9], [11] [12]); For any $n \geq 0$, $I_q(x^n) = \int_{\mathbb{Z}_p} x^n d\mu_q(x) = B_n(q)$, where $B_n(q)$ is the modified Bernoulli numbers (see [3], [4]).

In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on \mathbb{Z}_p . By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.

2. The q-extension of the I_0 -integral transform and related numbers and polynomials

Given $\omega \in \mathbf{T}_p$, we will denote by $\phi_\omega : \mathbb{Z}_p \to \mathbb{C}_p, x \mapsto \omega^x$, the locally constant extension of the power function from \mathbb{Z} to \mathbb{Z}_p . In [11], the I_q -Fourier transform for $f \in UD(\mathbb{Z}_p, \mathbb{C}_p)$ is the function $I_q(f) : \mathbf{T}_p \to \mathbb{C}_p$ defined by

(2.1)
$$I_{q}(f\phi_{\omega}) = \lim_{N \to \infty} \frac{1}{[p^{N}]_{q}} \sum_{x=0}^{p^{N}-1} \phi_{\omega}(x) f(x) q^{x}.$$

This is an q-extension of the I_0 -Fourier transform (1.3), that is, the I_0 -Fourier transform of f is the case $q \to 1$ of $I_q(f\phi_\omega)$ in (2.1). In terms of integration, one can have the integral form

(2.2)
$$I_{q}(f\phi_{\omega}) = \int_{\mathbb{Z}_{p}} \phi_{\omega}(x) f(x) d\mu_{q}(x), \quad \omega \in \mathbf{T}_{p}.$$

Also its inverse I_q -Fourier transform is seem to be equivalent to the limit

(2.3)
$$f(x)q^{x} = \frac{\log q}{q-1} \lim_{N \to \infty} \sum_{\omega \in C_{N}} \phi_{\omega^{-1}}(x) I_{q}(f\phi_{\omega})$$

for all $x \in \mathbb{Z}_p$ (see [11]).

Note that the distribution μ_q on \mathbb{Z}_p has the property

$$\mu_q(ap + p^{N+1}\mathbb{Z}_p) = [p]_q^{-1}\mu_{q^p}(a + p^N\mathbb{Z}_p)$$

followed trivially from the definition (1.5). Since $\mathbb{Z}_p^{\times} = \mathbb{Z}_p \backslash p\mathbb{Z}_p$, this implies that for any $f \in UD(\mathbb{Z}_p, \mathbb{C}_p)$ on \mathbb{Z}_p^{\times}

(2.4)
$$\int_{\mathbb{Z}_p^{\times}} \phi_{\omega}(x) f(x) d\mu_q(x) = I_q(f\phi_{\omega}) - [p]_q^{-1} I_{q^p}(f(px)\phi_{\omega^p}).$$

In the following proposition we obtain the shift versus integration of the I_q -Fourier transform for uniformly differentiable functions on \mathbb{Z}_p .

Proposition 2.1. Let f be a uniformly differentiable function on \mathbb{Z}_p . For some fixed $s \in \mathbb{Z}_p$ and $\omega \in \mathbf{T}_p$

$$I_q(f(x+s+1)\phi_\omega) - \frac{1}{\omega q}I_q(f(x+s)\phi_\omega) = \frac{q-1}{\omega q \log q}(f'(s) + f(s)\log q).$$

Proof. From the definition (2.1), it is easy to see that

$$\frac{\omega q \log q}{q-1} \int_{\mathbb{Z}_p} \phi_{\omega}(x) f(x+s+1) d\mu_q(x)$$

$$= \lim_{N \to \infty} \frac{1}{p^N} \sum_{s=0}^{p^N-1} \phi_{\omega}(x) f(x+s) q^x + \lim_{N \to \infty} \frac{\phi_{\omega}(p^N) f(p^N+s) q^{p^N} - f(s)}{p^N}.$$

It is easy to check that a uniformly differentiable function $\phi_{\omega}(x)f(x+s)q^x$ on $x \in \mathbb{Z}_p$ can be differentiated in the usual way:

$$\lim_{p^N \to 0} \frac{\phi_{\omega}(p^N) f(p^N + s) q^{p^N} - f(s)}{p^N} = f'(s) + f(s) \log q \quad \text{for } s \in \mathbb{Z}_p.$$

The result now follows easily.

Corollary 2.2. 1. Suppose that $\omega \in \mathbf{T}_p$. Let $I_q(e^{tx}\phi_\omega)$ be a power series about the origin as follows

$$I_q(e^{tx}\phi_\omega) = \sum_{k=0}^\infty \frac{B_k(q,\omega)}{k!} t^k \in \mathbb{C}_p[[t]],$$

where $|t|_p < p^{-1/(p-1)}$ and $t \neq 0 \in \mathbb{C}_p$. Then the coefficients of expansion $\{B_k(q,\omega)\}$ can be written by

$$\begin{split} B_k(q,\omega) &= I_q(x^k \phi_\omega) \\ &= \begin{cases} \frac{q-1}{\omega q-1} \left(H_k(\frac{1}{\omega q}) + \frac{k}{\log q} H_{k-1}(\frac{1}{\omega q}) \right), & \text{if } k \ge 1 \\ \frac{q-1}{\omega q-1}, & \text{if } k = 0. \end{cases} \end{split}$$

Here the generalized k-th Euler number $H_k(u)$ attached to an algebraic $u \neq 1$ has been defined by Frobenius (1910): $(1-u)/(e^t-u) = \sum_{k=0}^{\infty} H_k(u)t^k/k!$.

2. For $\omega \in \mathbf{T}_p$ and $k \geq 0$,

$$I_q(q^{kx}\phi_\omega) = \sum_{i=0}^{\infty} (q^k - 1)^i I_q(\binom{x}{i}\phi_\omega) = \frac{k+1}{[k+1]_{q,\omega}},$$

where $[k]_{q,\omega} = (\omega q^k - 1)/(q-1)$ and $\binom{x}{i} = \frac{x(x-1)\cdots(x-i+1)}{i!}$. Moreover, the sequence $\{q^k\}$ can be extended to a locally analytic function q^x for $x \in \mathbb{Z}_p$.

We define now the generating function of a new Bernoulli numbers by I_{q} Fourier transform. The twisted q-extension of Bernoulli numbers is define by

$$(2.5) I_q(e^{tx}\phi_\omega) = \frac{q-1}{\log q} \frac{t+\log q}{\omega q e^t - 1} = \sum_{k=0}^\infty B_k(q,\omega) \frac{t^k}{k!}, \quad \omega \in \mathbf{T}_p$$

for $|t|_p < p^{-1/(p-1)}$. If $q \to 1$, then from application of L'Hospital's rule the expression (2.5) is reduced to

$$\lim_{q \to 1} I_q(e^{tx}\phi_{\omega}) = \frac{t}{\omega e^t - 1}, \quad \omega \in \mathbf{T}_p.$$

The exciting properties of this formula were shown by T. Kim (see [5]) and C. F. Woodcock ([23, Proposition 7.1 (i)] and [24]). If $\omega = 1$, then

$$I_q(e^{tx}) = \frac{q-1}{\log q} \frac{t + \log q}{qe^t - 1} = \sum_{k=0}^{\infty} B_k(q, 1) \frac{t^k}{k!},$$

where $|t|_p < p^{-1/(p-1)}$ (cf. [1], [3], [4], [9], [10], [12], [16], [20]).

Corollary 2.3. Let $\omega \in \mathbf{T}_p$ with $\omega^N = 1$, $\omega \neq 1$ for N > 1. Set

$$\lim_{q \to 1} I_q(e^{tx}\phi_\omega) = \sum_{k=0}^{\infty} B_k(1,\omega)t^k/k!.$$

Then

$$B_k(1,\omega) = N^{k-1} \sum_{i=0}^{N-1} \omega^i B_k(\frac{i}{N}),$$

where $B_k(\cdot)$ is the usual Bernoulli polynomials and $k \geq 1$.

Corollary 2.4. Let $k \geq 0$. Then

- 1. $\frac{q-1}{\log q} q^x x^k = \sum_{\omega \in \mathbf{T}_p, \, \omega \neq 1} \phi_{\omega^{-1}}(x) B_k(q, \omega) + B_k(q, 1).$ 2. $\frac{q-1}{\log q} q^{(k+1)x} = \sum_{\omega \in \mathbf{T}_p, \, \omega \neq 1} \phi_{\omega^{-1}}(x) \frac{k+1}{[k+1]_{q,\omega}} + \frac{k+1}{[k+1]_{q,1}}.$

Proof. From (2.3) and Corollary 2.2, the series

$$\sum_{\omega \in C_{p^N}} \phi_{\omega^{-1}}(x) I_q(x^k \phi_{\omega})$$

converges uniformly to $\frac{\log q}{q-1}q^xx^k$ as $N\to\infty$. So Part 1 follows directly. Part 2 follows by a similar method of Part 1.

In Part 1 and Part 2 of Corollary 2.4, putting k=0, we obtain the integral series expansion

$$\frac{q^x}{\log q} = \sum_{\omega \in \mathbf{T}_n} \phi_{\omega^{-1}}(x) \frac{1}{\omega q - 1},$$

whence, for x=0 in the above, we have $\frac{1}{\log q} = \sum_{\omega \in \mathbf{T}_p} \frac{1}{\omega q-1}$ for $q \neq 1$. This formula gives an explicit expression for $\frac{1}{\log q}$ in terms of $\frac{1}{\omega q-1}$ (see [23, p. 692]).

Now we consider the recursion formula for the sequence of numbers $\{B_k(q,\omega)\}$. From Proposition 2.1 we obtain the difference formula

$$I_q(f_1\phi_\omega) - rac{1}{\omega q}I_q(f\phi_\omega) = rac{q-1}{\omega q\log q}(f'(0) + f(0)\log q),$$

where $f_1(x) = f(x+1)$. From this expression, when $f(x) = x^k$ for $k \ge 0$, we easily deduce that

(2.6)
$$I_{q}((x+1)^{k}\phi_{\omega}) - \frac{1}{\omega q}I_{q}(x^{k}\phi_{\omega}) = \begin{cases} \frac{q-1}{\omega q}, & k = 0, \\ \frac{q-1}{\omega q \log q}, & k = 1, \\ 0, & k \ge 2. \end{cases}$$

We expand the left-hand side of Equation (2.6) by the binomial theorem. It may be stated as

(2.7)
$$I_q((x+1)^k\phi_\omega) = \sum_{i=0}^k \binom{k}{i} \int_{\mathbb{Z}_p} \phi_\omega(x) x^i d\mu_q(x).$$

From (2.5), (2.7) and Part 1 of Corollary 2.2, we derive

$$(2.8) I_{q}((x+1)^{k}\phi_{\omega}) - \frac{1}{\omega q}I_{q}(x^{k}\phi_{\omega})$$

$$= \sum_{i=0}^{k} {k \choose i} B_{i}(q,\omega) - \frac{1}{\omega q} B_{k}(q,\omega)$$

$$= \begin{cases} \frac{\omega q - 1}{\omega q} B_{0}(q,\omega), & k = 0, \\ \sum_{i=0}^{k-1} {k \choose i} B_{i}(q,\omega) + \frac{\omega q - 1}{\omega q} B_{k}(q,\omega), & k \geq 1. \end{cases}$$

As a consequence of the above formulae (2.6) and (2.8) we deduce the recurrence relation for the sequence of numbers $\{B_k(q,\omega)\}$ as follows

Proposition 2.5. The numbers $\{B_k(q,\omega)\}$ satisfies

$$B_0(q,\omega)=rac{1}{[1]_{q,\omega}},\quad B_1(q,\omega)=rac{1}{[1]_{q,\omega}\log q}-rac{\omega q}{[1]_{q,\omega}(\omega q-1)}$$

and

$$B_k(q,\omega) = \frac{\omega q}{1 - \omega q} \sum_{i=0}^{k-1} {k \choose i} B_i(q,\omega) \quad \textit{for } k \ge 2.$$

3. Twisted p-adic q-L-functions

Let d be a fixed integer and p be a fixed prime number. We set

(3.1)
$$X = \varprojlim_{N} (\mathbb{Z}/dp^{N}\mathbb{Z}), \quad X^{*} = \bigcup_{\substack{0 < a < dp \\ (a,p)=1}} a + dp\mathbb{Z}_{p},$$
$$a + dp^{N}\mathbb{Z}_{p} = \{x \in X \mid x \equiv a \pmod{dp^{N}}\},$$

where $a \in \mathbb{Z}$ with $0 \le a < dp^N$. Let $D = \{q \in \mathbb{C}_p \mid |q-1|_p < 1\}$, and let $\overline{D} = \mathbb{C}_p \setminus D$ be the complement of the open unit disc around 1. Note that if $q \in \overline{D}$ and $\operatorname{ord}_p(1-q) \ne -\infty$, then $\mu_q(a+dp^N\mathbb{Z}_p) = \frac{q^a}{[dp^N]_q}$ is the measure (cf. [7]). Hereafter, we assume that $q \in \overline{D}$ and $\operatorname{ord}_p(1-q) \ne -\infty$.

Let χ be a primitive Dirichlet character with conductor d. Defining the generalized numbers of $B_k(q,\omega)$ by the formula

(3.2)
$$B_{k,\chi}(q,\omega) = k! \cdot \text{coefficient of } t^k \text{ in } \frac{q-1}{\log q} \sum_{i=1}^d \frac{\chi(a)\phi_\omega(a)q^a(t+\log q)e^{ta}}{\phi_\omega(d)q^de^{dt}-1}.$$

Thus we deduce the integral of the generalized numbers

(3.3)
$$B_{k,\chi}(q,\omega) = \int_X \phi_\omega(x) \chi(x) x^k d\mu_q(x) \quad \text{for } k \ge 0.$$

To see that (3.3) follows from

(3.4)
$$\int_X \phi_{\omega}(x)\chi(x)e^{tx}d\mu_q(x) = \sum_{k=0}^{\infty} \int_X \phi_{\omega}(x)\chi(x)x^kd\mu_q(x)\frac{t^k}{k!},$$

we note

$$\begin{split} & \int_{X} \phi_{\omega}(x) \chi(x) e^{tx} d\mu_{q}(x) \\ & = \frac{q-1}{\log q} \lim_{N \to \infty} \frac{1}{dp^{N}} \sum_{x=1}^{dp^{N}} \chi(x) \phi_{\omega}(x) e^{tx} q^{x} \\ & = [d]_{q}^{-1} \sum_{a=1}^{d} \chi(a) \phi_{\omega}(a) q^{a} e^{ta} \frac{q^{d}-1}{\log q^{d}} \lim_{N \to \infty} \frac{1}{p^{N}} \sum_{x=0}^{p^{N}-1} \phi_{\omega^{d}}(x) e^{tdx} q^{dx} \\ & = [d]_{q}^{-1} \sum_{a=1}^{d} \chi(a) \phi_{\omega}(a) q^{a} e^{ta} \int_{\mathbb{Z}_{p}} \phi_{\omega^{d}}(x) e^{tdx} d\mu_{q^{d}}(x) \\ & = \frac{q-1}{\log q} \sum_{a=1}^{d} \frac{\chi(a) \phi_{\omega}(a) q^{a} (t + \log q) e^{ta}}{\phi_{\omega}(d) q^{d} e^{dt} - 1} \quad \text{(by (2.5))}. \end{split}$$

Proposition 3.1. Let χ be a primitive Dirichlet character with conductor d and $x \in \mathbb{Z}_p$. Then

$$\frac{q-1}{\log q}q^{x}\chi(x)x^{k} = \sum_{\omega \in \mathbf{T}_{n}, \, \omega \neq 1} \phi_{\omega^{-1}}(x)B_{k,\chi}(q,\omega) + B_{k,\chi}(q,1)$$

for $k \geq 0$.

Let p be odd rational prime and let $\omega_p: X^* \to X$ be the function defined by (see [2], [15], [19], [22])

$$\omega_p(x) = \lim_{\substack{n \to \infty \\ p-\text{adically}}} x^{p^n}.$$

The function ω_p is called the Teichmüller character, and it appears quite frequently in many different guises. For $s \in \mathbb{Z}_p$ and $\omega \in \mathbf{T}_p$, we define

$$(3.5) \qquad L_{p,q}(s,\chi,\omega) = \lim_{N \to \infty} \frac{1}{[dp^N]_q} \sum_{\substack{0 \le x \le dp^N - 1 \\ (p,x) = 1}} q^x \phi_\omega(x) \chi(x) \left(\frac{x}{\omega_p(x)}\right)^{1-s}.$$

For $k \geq 0$, we set $\chi_k = \chi \omega_p^{-k}$. Since $\mu_q(pU) = [p]_q^{-1} \mu_{q^p}(U)$ for $U \subset X$, the value of the function $L_{p,q}(s,\chi,\omega)$ at non-positive integers are given by

(3.6)
$$L_{p,q}(1-k,\chi,\omega) = B_{k,\chi_k}(q,\omega) - p^k[p]_q^{-1}\chi_k(p)B_{k,\chi_k}(q^p,\omega^p)$$

for $k \geq 1$. We thus obtain the following

Theorem 3.2. Let χ be a primitive Dirichlet character with conductor d and $s \in \mathbb{Z}_p, \omega \in \mathbf{T}_p$. Then the function $L_{p,q}(s,\chi,\omega)$ interpolates the values $B_{k,\chi_k}(q,\omega) - p^k[p]_q^{-1}\chi_k(p)B_{k,\chi_k}(q^p,\omega^p)$ when s = 1 - k for $k \ge 1$.

For $q \in \overline{D}$, we have

$$\left| \frac{\mu_q(a + dp^N \mathbb{Z}_p)}{1 - q} \right|_p = \left| \frac{q^a}{(1 - q)[dp^N]} \right|_p = \left| \frac{q^a}{1 - q^{dp^N}} \right|_p \le 1.$$

By [13, p. 31, Eq. (3.4)], if $k \equiv k' \pmod{(p-1)p^N}$, then we obtain the assertion that

$$\left|x^k - x^{k'}\right|_p \le \frac{1}{p^{N+1}}$$
 for $x \in X^*$.

Using the corollary at the end of [14, Chapter II, §5] and (3.5), their integrals over the compact set X^* are also close together, and in fact, it is easy to see

that for k > 1

$$(1-q)^{-1}L_{p,q}(1-k,\chi_{-k},\omega)$$

$$= \lim_{N\to\infty} \frac{1}{1-q^{dp^{N}}} \sum_{\substack{0\leq x\leq dp^{N}-1\\(p,x)=1}} q^{x}\phi_{\omega}(x)\chi\omega_{p}^{k}(x) \left(\frac{x}{\omega_{p}(x)}\right)^{k}$$

$$= \int_{X^{*}} \chi(x)\phi_{\omega}(x)x^{k} \frac{d\mu_{q}(x)}{1-q}$$

$$\equiv \int_{X^{*}} \chi(x)\phi_{\omega}(x)x^{k'} \frac{d\mu_{q}(x)}{1-q} \pmod{p^{N+1}}$$

$$= (1-q)^{-1}L_{p,q}(1-k',\chi_{-k'},\omega).$$

Hence we can prove the following congruence.

Theorem 3.3. Let χ be a primitive Dirichlet character with conductor d, and let $k \equiv k' \pmod{(p-1)p^N}$ and $\omega \in \mathbf{T}_p$. Then

$$(1-q)^{-1}L_{p,q}(1-k,\chi_{-k},\omega) \equiv (1-q)^{-1}L_{p,q}(1-k',\chi_{-k'},\omega) \pmod{p^{N+1}}.$$

Finally, we shall also want to consider modified twisted L-functions in the complex field \mathbb{C} . Let $q \in \mathbb{C}$ with 0 < |q| < 1, and let $s \in \mathbb{C}$ with $\mathrm{Re}(s) > 1$. We set

(3.7)
$$L_q(s,\chi,\omega) = \frac{q-1}{1-s} \sum_{n=1}^{\infty} \frac{\omega^n q^n \chi(n)}{n^{s-1}} + \frac{q-1}{\log q} \sum_{n=1}^{\infty} \frac{\omega^n q^n \chi(n)}{n^s},$$

the series being absolutely convergent (cf. [3], [4], [6], [9], [12], [17], [18], [21]). In particular, if we replace s by 1 - k, one then sees easily that

$$\begin{split} &L_q(1-k,\chi,\omega)\\ &=\frac{q-1}{k}\sum_{n=1}^{\infty}\omega^nq^n\chi(n)n^k+\frac{q-1}{\log q}\sum_{n=1}^{\infty}\omega^nq^n\chi(n)n^{k-1}\\ &=\frac{q-1}{k}\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^k\left(\sum_{n=1}^{\infty}\omega^nq^n\chi(n)e^{nt}+\frac{t}{\log q}\sum_{n=1}^{\infty}\omega^nq^n\chi(n)e^{nt}\right)\bigg|_{t=0}. \end{split}$$

We consider the function

$$\Psi_q(t) = (1-q)\sum_{n=1}^{\infty}\omega^nq^n\chi(n)e^{nt} + \frac{(1-q)t}{\log q}\sum_{n=1}^{\infty}\omega^nq^n\chi(n)e^{nt}.$$

Since χ is a character mod d we rearrange the terms in the series for $\Psi_q(t)$ according to the residue classes mod d. Then we have

$$\begin{split} \Psi_q(t) &= \left((1-q) + \frac{(1-q)t}{\log q} \right) \sum_{a=1}^d \sum_{b=0}^\infty \omega^{a+bd} q^{a+bd} \chi(a+bd) e^{(a+bd)t} \\ &= \frac{q-1}{\log q} \sum_{a=1}^d \frac{\chi(a) \omega^a q^a (t + \log q) e^{ta}}{\omega^d q^d e^{dt} - 1}, \end{split}$$

which is equal to the formula in (3.2). We will apply the recipe above. Then we see that for $k \ge 1$

(3.8)
$$L_q(1-k,\chi,\omega) = -\frac{1}{k} \left(\frac{\mathrm{d}}{\mathrm{d}t} \right)^k \left(\Psi_q(t) \right) \bigg|_{t=0}.$$

Comparing (3.2) and (3.8), we arrive at the following

Proposition 3.4. Let χ be a primitive Dirichlet character with conductor d, and let $q \in \mathbb{C}$ with 0 < |q| < 1. Then

$$L_q(1-k,\chi,\omega) = -rac{1}{k}B_{k,\chi}(q,\omega) \quad \textit{for } k \geq 1.$$

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} . Using (3.6) and Proposition 3.4 we have

$$-\frac{L_{p,q}(1-k,\chi,\omega)}{k} = L_q(1-k,\chi_k,\omega) - p^k[p]_q^{-1}\chi_k(p)L_{q^p}(1-k,\chi_k,\omega^p)$$

for $k \geq 1$. Here the right-hand side is the value of the complex L-function which the left-hand side is the values of the p-adic L-function and the value are equal in the field $\overline{\mathbb{Q}}$ common to \mathbb{C}_p and \mathbb{C} .

Theorem 3.5. Let $\omega \in \mathbf{T}_p$ and $q \in \overline{D}$ with $ord_p(1-q) \neq -\infty$. Let ω_p be the Teichmüller character. For χ a primitive Dirichlet character with conductor d, the function from $\mathbb{Z}_p \setminus \{1\}$ to \mathbb{C}_p

$$\frac{L_{p,q}(s,\chi,\omega)}{s-1} = \frac{1}{s-1} \lim_{N \to \infty} \frac{1}{[dp^N]_q} \sum_{\substack{0 \le x \le dp^N - 1 \\ (n,x) = 1}} q^x \phi_\omega(x) \chi(x) \left(\frac{x}{\omega(x)}\right)^{1-s}$$

interpolates the values $L_q(1-k,\chi_k,\omega) - p^k[p]_q^{-1}\chi_k(p)L_{q^p}(1-k,\chi_k,\omega^p)$ when s=1-k.

References

- M. Cenkci, M. Can, and V. Kurt, p-adic interpolation functions and Kummer-type congruences for q-twisted and q-generalized twisted Euler numbers, Adv. Stud. Contemp. Math. 9 (2004), no. 2, 203-216.
- [2] K. Iwasawa, Lectures on p-Adic L-Functions, Ann. of Math. Stud. 74, Princeton Univ. Press, Princeton, 1972.
- [3] M.-S. Kim and J.-W. Son, On Bernoulli numbers, J. Korean Math. Soc. 37 (2000), no. 3, 391–410.

- [4] _____, Some remarks on a q-analogue of Bernoulli numbers, J. Korean Math. Soc. 39 (2002), no. 2, 221–236.
- [5] T. Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), no. 2, 21-26.
- [6] ______, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), no. 1, 73–86.
- [7] ______, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory **76** (1999), no. 2, 320–329.
- [8] _____, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288–299.
- [9] _____, A new approach to q-zeta function, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 157-162.
- [10] ______, On a p-adic interpolation function for the q-extension of the generalized Bernoulli polynomials and its derivative, available at math.NT/0502460, preprint 2005.
- [11] ______, A note on the Fourier transform of p-adic q-integrals, available at ArXiv math.NT/0511573, preprint 2005.
- [12] T. Kim, L. C. Jang, S.-H. Rim, and H.-K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21.
- [13] N. Koblitz, p-Adic Analysis: a Short Course on Recent Work, Cambridge University Press, Mathematical Society Lecture Notes, Series 46, 1980.
- [14] _____, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer-Verlag, New York, 1984.
- [15] T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte. I. Einfuhrung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328-339.
- [16] Q.-M. Luo and F. Qi, Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 7 (2003), no. 1, 11-18.
- [17] C. S. Ryoo, H. Song, and R. P. Agarwal, On the roots of the q-analogue of Euler-Barnes' polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 2, 153-163.
- [18] J. Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory 31 (1989), no. 3, 346–362.
- [19] W. H. Schikhof, Ultrametric Calculus, An introduction to p-adic analysis, Cambridge Studies in Adv. Math. 4, Cambridge Univ. Press, Cambridge, 1984.
- [20] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. (Kyungshang) 11 (2005), no. 2, 205–218.
- [21] H. M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-Zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2005), no. 2, 241–268.
- [22] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer-Verlag, New York, 1997.
- [23] C. F. Woodcock, Fourier analysis for p-adic Lipschitz functions, J. London Math. Soc. (2) 7 (1974), 681–693.
- [24] ______, Convolutions on the ring of p-adic integers, J. London Math. Soc. (2) 20 (1979), no. 1, 101–108.

MIN-SOO KIM
DEPARTMENT OF MATHEMATICS
KYUNGNAM UNIVERSITY
MASAN 631-701, KOREA
E-mail address: mskim@kyungnam.ac.kr

JIN-WOO SON
DEPARTMENT OF MATHEMATICS
KYUNGNAM UNIVERSITY
MASAN 631-701, KOREA
E-mail address: sonjin@kyungnam.ac.kr