• Title/Summary/Keyword: p-MOSFET

Search Result 228, Processing Time 0.024 seconds

Electrical Characteristic of Power MOSFET with Zener Diode for Battery Protection IC

  • Kim, Ju-Yeon;Park, Seung-Uk;Kim, Nam-Soo;Park, Jung-Woong;Lee, Kie-Yong;Lee, Hyung-Gyoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • A high power MOSFET switch based on a 0.35 ${\mu}m$ CMOS process has been developed for the protection IC of a rechargeable battery. In this process, a vertical double diffused MOS (VDMOS) using 3 ${\mu}m$-thick epi-taxy layer is integrated with a Zener diode. The p-n+Zener diode is fabricated on top of the VDMOS and used to protect the VDMOS from high voltage switching and electrostatic discharge voltage. A fully integrated digital circuit with power devices has also been developed for a rechargeable battery. The experiment indicates that both breakdown voltage and leakage current depend on the doping concentration of the Zener diode. The dependency of the breakdown voltage on doping concentration is in a trade-off relationship with that of the leakage current. The breakdown voltage is obtained to exceed 14 V and the leakage current is controlled under 0.5 ${\mu}A$. The proposed integrated module with the application of the power MOSFET indicates the high performance of the protection IC, where the overcharge delay time and detection voltage are controlled within 1.1 s and 4.2 V, respectively.

Detection of deoxynivalenol using a MOSFET-based biosensor (MOSFET형 바이오 센서를 이용한 디옥시 니발레놀의 검출)

  • Lim, Byoung-Hyun;Kwon, In-Su;Lee, Hee-Ho;Choi, Young-Sam;Shin, Jang-Kyoo;Choi, Sung-Wook;Chun, Hyang-Sook
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • We have detected deoxynivalenol(DON) using a metal-oxide-semiconductor field-effect-transistor(MOSFET)-based biosensor. The MOSFET-based biosensor is fabricated by a standard complementary metal-oxide-semiconductor(CMOS) process, and the biosensor's electrical characteristics were investigated. The output of the sensor was stabilized by employing a reference electrode that applies a fixed bias to the gate. Au which has a chemical affinity for thiol was used as the gate metal to immobilize a self-assembled monolayer(SAM) made of 16-mercaptohexadecanoic acid(MHDA). The SAM was used to immobilize anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti- deoxynivalenol antibody. Anti-deoxynivalenol antibody and deoxynivalenol were bound by an antigen-antibody reaction. In this study, it is confirmed that the MOSFET-based biosensor can detect deoxynivalenol at concentrations as low as 0.1 ${\mu}g$/ml. The measurements were performed in phosphate buffered saline(PBS; pH 7.4) solution. To verify the interaction among the SAM, antibody, and antigen, surface plasmon resonance(SPR) measurements were performed.

Restoration Characteristics along to Time of the Gate and Substrate Current in p-channel MOSFETS (P-채널 MOSFET에서 게이트와 기판 전류의 시간에 따른 복원 특성)

  • 조상운;장원수;배지철;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1101-1104
    • /
    • 2003
  • In this paper, we analyzed the gate current and substrate current by the hot carrier effects and restoration phenomenon of characteristics by time in the p-channel MOSFETs. The Stress voltage condition is a voltage in maximum gate current and time is 3s, 10s, 30s, l00s, 1000s, 2000s and 3000s. As results of analysis, the gate current and substrate current were decreased by stress time, and the restoration time of characteristics were shown the results that were decreased by the exponential times.

  • PDF

Characterization and Comparison of Doping Concentration in Field Ring Area for Commercial Vertical MOSFET on 8" Si Wafer (8인치 Si Power MOSFET Field Ring 영역의 도핑농도 변화에 따른 전기적 특성 비교에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 2013
  • Power Metal Oxide Semiconductor Field Effect Transistor's (MOSFETs) are well known for superior switching speed, and they require very little gate drive power because of the insulated gate. In these respects, power MOSFETs approach the characteristics of an "ideal switch". The main drawback is on-resistance RDS(on) and its strong positive temperature coefficient. While this process has been driven by market place competition with operating parameters determined by products, manufacturing technology innovations that have not necessarily followed such a consistent path have enabled it. This treatise briefly examines metal oxide semiconductor (MOS) device characteristics and elucidates important future issues which semiconductor technologists face as they attempt to continue the rate of progress to the identified terminus of the technology shrink path in about 2020. We could find at the electrical property as variation p base dose. Ultimately, its ON state voltage drop was enhanced also shrink chip size. To obtain an optimized parameter and design, we have simulated over 500 V Field ring using 8 Field rings. Field ring width was $3{\mu}m$ and P base dose was $1e15cm^2$. Also the numerical multiple $2.52cm^2$ was obtained which indicates the doping limit of the original device. We have simulated diffusion condition was split from $1,150^{\circ}C$ to $1,200^{\circ}C$. And then $1,150^{\circ}C$ diffusion time was best condition for break down voltage.

A Study on LCL Circuit for Satellite Power System Applying WBG Device (WBG 소자를 적용한 위성 전력 시스템용 LCL 회로에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man;Kim, Hyun Bae;Park, Sung Woo;Kim, Kyu Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.101-106
    • /
    • 2022
  • In this paper, WBG semiconductor such as SiC and GaN were applied as power switches for LCL circuit that can be applied to satellite power systems and the test results of the LCL circuit are reported. P-channel MOSFET and N-channel MOSFET, which were generally used in the conventional LCL circuit, were applied together to expand the utility of the test results. The design and stability evaluation were performed using a Micro Cap circuit simulation program. For the test circuit, a module using each switch was manufactured, and a total of 5 modules were manufactured and the steady state and transient state characteristics were compared. From the experimental results, the LCL circuit for power supply of the satellite power system constructed in this paper satisfied the constant current and constant voltage conditions under various operating conditions. The P-channel MOSFET showed the lowest efficiency characteristics, and the three N-channel switches of Si, SiC and GaN showed relatively high efficiency characteristics of up to 99.05% or more. In conclusion, it was verified that the on-resistor of the switch had a direct effect on the efficiency and loss characteristics.

Design and Optimization of 4.5 kV 4H-SiC MOSFET with Current Spreading Layer (Current Spreading Layer를 도입한 4.5 kV 4H-SiC MOSFET의 설계 및 최적화)

  • Young-Hun, Cho;Hyung-Jin, Lee;Hee-Jae, Lee;Geon-Hee, Lee;Sang-Mo, Koo
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.728-735
    • /
    • 2022
  • In this work, we investigated a high-voltage (~4.5 kV) 4H-SiC power DMOSFET with modifications of current spreading layer (CSL), which was introduced below the p-well region for low on-resistance. These include the following: 1) a thickness of CSL (TCSL) from 0 um to 0.9 um; 2) a doping concentration of CSL (NCSL) from 1×1016 cm-3 to 5×1016 cm-3. The design is optimized using TCAD 2D-simulation, and we found that CSL helps to reduce specific on-resistance but also breakdown voltage. The resulting structures exhibit a specific on-resistance (Ron,sp) of 59.61 mΩ·cm2, a breakdown voltage (VB) of 5 kV, and a Baliga's Figure of Merit (BFOM) of 0.43 GW/cm2.

전자선 직접묘사에 의한 Deep Submicron $p^+$Poly pMOSFET 제작 및 특성

  • Kim, Cheon-Su;Lee, Jin-Ho;Yun, Chang-Ju;Choi, Sang-Soo;Kim, Dae-Yong
    • ETRI Journal
    • /
    • v.14 no.1
    • /
    • pp.40-51
    • /
    • 1992
  • $0.25{\mu} m$ 급 pMOSFET소자를 구현하기 위해, $P^+$ 폴리실리콘을 적용한 pMOS를 제작하였으며, $p^+$ 폴리실리콘 게이트 소자에서 심각하게 문제가 되고 있는 붕소이온 침투현상을 조사하고 붕소이온 침투가 일어나지 않는 최적열처리온도를 조사하였다. 소자제조 공정중 게이트 공정만 전자선 (EBML300)을 이용하여 직접묘사하고 그 이외의 공정은 stepper(gline) 을 사용하는 Mix & Match 방법을 사용하였다. 또한 붕소이온 침투현상을 억제하기 위한 한가지 예로서, 실리콘산화막과 실리콘질화막을 적층한 ONO(Oxide/Nitride/Oxide) 구조를 게이트 유전체로 적용한 소자를 제작하여 그 가능성을 조사하였다. 그 결과 $850^{\circ}C$의 온도와 $N_2$ 분위기에서 30분동안 열처리 하였을 경우, 붕소이온의 침투현상이 일어나지 않음을 SIMS(Secondary Ion Mass Spectrometer) 분석 및 C-V(Capacitance-Voltage) 측정으로 확인할 수 있었으며 그 이상의 온도에서는 붕소이온이 침투되어 flat band전압(Vfb)을 변화시킴을 알았다. 6nm의 얇은 게이트 산화막 및 $0.1{\mu} m$ 이하의 LDD(Lightly Doped Drain) $p^-$의 얇은 접합을 형성함으로써 소자의 채널길이가 $0.2 {\mu} m$까지 짧은 채널효과가 거의 없는 소자제작이 가능하였으며, 전류구동능력은 $0.26\muA$/$\mu$m(L=0.2$\mu$m, V$_DS$=2.5V)이었고, subthreshold 기울기는 89-85mV/dec.를 얻었다. 붕소이온의 침투현상을 억제하기 위한 한가지 방법으로 ONO 유전체를 소자에 적용한 결과, $900^{\circ}C$에서 30분의 열처리조건에서도 붕소이온 침투현상이 일어나지 않음으로 미루어 , $SiO_2$ 게이트 유전체보다 ONO 게이트 유전체가 boron 침투에 대해서 좋은 장벽 역활을 함을 알았다. ONO 게이트 유전체를 적용한 소자의 경우, subthreshold특성은 84mV/dec로서 좋은 turn on,off 특성을 얻었으나, ONO 게이트 유전체는 막자체의 누설전류와 실리콘과 유전체 계면의 고정전하량인 Qss의 양이 공정조건에 따라 변화가 심해서 문턱전압 조절이 어려워 소자적용시 문제가 된다. 최근 바닥 산화막(bottom oxide) 두께가 최적화된 ONO 게이트 유전체에 대하 연구가 활발히 진행됨을 미루어, 바닥 산화막 최적화가 된다면 더 좋은 결과가 예상된다.

  • PDF

70nm NMOSFET Fabrication with Ultra-shallow $n^{+}-{p}$ Junctions Using Low Energy $As_{2}^{+}$ Implantations (낮은 에너지의 $As_{2}^{+}$ 이온 주입을 이용한 얕은 $n^{+}-{p}$ 접합을 가진 70nm NMOSFET의 제작)

  • Choe, Byeong-Yong;Seong, Seok-Gang;Lee, Jong-Deok;Park, Byeong-Guk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Nano-scale gate length MOSFET devices require extremely shallow source/drain eftension region with junction depth of 20∼30nm. In this work, 20nm $n^{+}$-p junctions that are realized by using this $As_{2}^{+}$ low energy ($\leq$10keV) implantation show the lower sheet resistance of the $1.0k\Omega$/$\square$ after rapid thermal annealing process. The $As_{2}^{+}$ implantation and RTA process make it possible to fabricate the nano-scale NMOSFET of gate length of 70nm. $As_{2}^{+}$ 5 keV NMOSFET shows a small threshold voltage roll-off of 60mV and a DIBL effect of 87.2mV at 100nm gate length devices. The electrical characteristics of the fabricated devices with the heavily doped and abrupt $n^{+}$-p junctions ($N_{D}$$10^{20}$$cm^{-3}$, $X_{j}$$\leq$20nm) suggest the feasibility of the nano-scale NMOSFET device fabrication using the $As_{2}^{+}$ low energy ion implantation.

  • PDF

Controller design of high current pulse rectifier utilizing MOSFET driving method (MOSFET 대용량 펄스 정류기 구현을 위한 제어기 설계)

  • Sun, Duk-Han;Cho, Nae-Soo;Youn, Kyung-Sup;Kim, Woo-Hyun;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.191-192
    • /
    • 2008
  • 도금 산업 분야에 이용되는 펄스 정류기의 경우 정밀한 도금을 위해 큰 용량에 오버슈트가 전혀 없는 아주 빠른 시스템 응답 특성을 요구한다. 이러한 특성을 만족시키기 위한 방안으로 ITAE로 성능지수를 이용한 PID 제어기 설계 방범을 시스템에 적용하여 PID 제기의 $K_D$, $K_P$, $K_I$을 찾는 과정을 알아보며, 선택된 제어 요소에 따라 시스템의 응답특성이 어떻게 변화되는지 모의실험을 통해 살펴본다.

  • PDF

Extended Trench Gate Superjunction Lateral Power MOSFET for Ultra-Low Specific on-Resistance and High Breakdown Voltage

  • Cho, Doohyung;Kim, Kwangsoo
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.829-834
    • /
    • 2014
  • In this paper, a lateral power metal-oxide-semiconductor field-effect transistor with ultra-low specific on-resistance is proposed to be applied to a high-voltage (up to 200 V) integrated chip. The proposed structure has two characteristics. Firstly, a high level of drift doping concentration can be kept because a tilt-implanted p-drift layer assists in the full depletion of the n-drift region. Secondly, charge imbalance is avoided by an extended trench gate, which suppresses the trench corner effect occurring in the n-drift region and helps achieve a high breakdown voltage (BV). Compared to a conventional trench gate, the simulation result shows a 37.5% decrease in $R_{on.sp}$ and a 16% improvement in BV.