DOI QR코드

DOI QR Code

Detection of deoxynivalenol using a MOSFET-based biosensor

MOSFET형 바이오 센서를 이용한 디옥시 니발레놀의 검출

  • Lim, Byoung-Hyun (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kwon, In-Su (Department of Sensor and Display Engineering, Kyungpook National University) ;
  • Lee, Hee-Ho (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Choi, Young-Sam (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Shin, Jang-Kyoo (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Choi, Sung-Wook (Korea Food Research Institude) ;
  • Chun, Hyang-Sook (Korea Food Research Institude)
  • 임병현 (경북대학교 전자전기컴퓨터학부) ;
  • 권인수 (경북대학교 센서 및 디스플레이공학과) ;
  • 이희호 (경북대학교 전자전기컴퓨터학부) ;
  • 최영삼 (경북대학교 전자전기컴퓨터학부) ;
  • 신장규 (경북대학교 전자전기컴퓨터학부) ;
  • 최성욱 (한국식품연구원) ;
  • 전향숙 (한국식품연구원)
  • Received : 2010.03.18
  • Accepted : 2010.07.05
  • Published : 2010.07.31

Abstract

We have detected deoxynivalenol(DON) using a metal-oxide-semiconductor field-effect-transistor(MOSFET)-based biosensor. The MOSFET-based biosensor is fabricated by a standard complementary metal-oxide-semiconductor(CMOS) process, and the biosensor's electrical characteristics were investigated. The output of the sensor was stabilized by employing a reference electrode that applies a fixed bias to the gate. Au which has a chemical affinity for thiol was used as the gate metal to immobilize a self-assembled monolayer(SAM) made of 16-mercaptohexadecanoic acid(MHDA). The SAM was used to immobilize anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti- deoxynivalenol antibody. Anti-deoxynivalenol antibody and deoxynivalenol were bound by an antigen-antibody reaction. In this study, it is confirmed that the MOSFET-based biosensor can detect deoxynivalenol at concentrations as low as 0.1 ${\mu}g$/ml. The measurements were performed in phosphate buffered saline(PBS; pH 7.4) solution. To verify the interaction among the SAM, antibody, and antigen, surface plasmon resonance(SPR) measurements were performed.

Keywords

References

  1. K. Miller, “Toxicological aspects of food”, Elsevier Applied Science, p. 139, 1987.
  2. B. A. Rotter, D. B. Prelusky, and J. J. Pestka, “Toxicology of deoxynivalenol”, J. Toxicol. Environ. Health, vol. 48. pp. 1-34, 1996.
  3. J. J. Pestka, “Enhanced surveillance of foodborne mycotoxins by immunochemical assay”, J. Assoc. Off. Anal. Chem., vol. 71, pp. 1075-1081, 1988.
  4. E. Tamiya and I. Karube, “Micro-biosensors for clinical Analysis”, Sensors and Actuators, vol. 15, pp. 199-207, 1988. https://doi.org/10.1016/0250-6874(88)87009-4
  5. Y. Hanazato, M. Nakako, and S. Shiono, “Multi- enzyme electrode using hydrogen ion-sensitive field effect transistor”, IEEE. Trans. Electron Devices, vol. ED-ee. pp. 47-51, 1986.
  6. S. Caras and J. Janata, “pH-based enzyme potentiometric sensors. part 1 - part 3”, Anal. Chem., vol. 57, pp. 1917-1925, 1985. https://doi.org/10.1021/ac00286a027
  7. H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, M. Gerstein, and M. Snyder, “Global analysis of protein activities using proteome chip”, Science, vol. 293, pp. 2101-2105, 2001. https://doi.org/10.1126/science.1062191
  8. C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, “Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips”, Anal. Chem. vol. 72, pp. 5731-5735, 1997. https://doi.org/10.1021/ac000801k
  9. S. A. Zugel, B. J. Burke, F. E. Regnier, and F. E. Lytle, “Electrophoretically mediated microanalysis of leucine aminopeptidase using two-photon excited fluorescence detection on a microchip”, Anal. Chem.,vol. 72, pp. 5731-5735, 2000. https://doi.org/10.1021/ac000801k
  10. J. R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector”, Anal. Chem. vol. 73, pp. 1622-1626, 2001. https://doi.org/10.1021/ac0004512
  11. D. Piscevic, W. Knoll, and M. J. Tarlov, “Surface plasmon microscopy of biotin-streptavidin binding reactions on UV-photopatterned alkanthiol self-assembled monolayers”, Supramolecular Science,vol. 2, pp. 99-106, 1995. https://doi.org/10.1016/0968-5677(96)89074-2
  12. J. Wang, M. P. Chatrathi, and B. Tian, “Microseparation chips for performing multienzymatic dehydrogenase / oxidase assays: Simultaneous electrochemicalmeasurement of ethanol and glucose”, Anal. Chem.,vol. 73, pp. 1296-1300, 2001. https://doi.org/10.1021/ac001205t
  13. M. A. Schwarz, B. Galliker, K. Fluri, T. Kappes, and P. C. Hauser, “A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device”, Analyst,vol. 126, pp. 147-151, 2001. https://doi.org/10.1039/b007383k
  14. C. Yuan, A. Chen, P. Kolb, and V. T. Moy, “Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy”, Biochemistry,vol. 39, pp. 10219-10223, 2000. https://doi.org/10.1021/bi992715o
  15. J. Wen, Y. H. Lin, F. Xiang, D. W. Matson, H. R. Udseth, and R. D. Smith, “Microfabricated isoelectric focusing device for direct electrrospray ionization-mass spectrometry”, Electrophoresis, vol. 21, pp. 191-197, 2000. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<191::AID-ELPS191>3.0.CO;2-M
  16. L. Licklider, X. Q. Wang, A. Desai, Y. C. Tai, and T. D. Lee, “A micromachined chip-based electrospray source for mass spectrometry”, Anal. Chem., vol. 72, pp. 367-375, 2000. https://doi.org/10.1021/ac990967p
  17. D.-S. Kim, Y.-T. Jeong, H.-J. Park, J.-K. Shin, P. Choi, J.-H. Lee, and G. Lim, “An FET-type charge sensor for highly sensitive detection of DNA sequence”, Biosens. Bioelectron., vol. 20, pp. 69-74, 2004. https://doi.org/10.1016/j.bios.2004.01.025
  18. D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes”, Sens. Actuators B, vol. 117, pp. 488-494, 2006. https://doi.org/10.1016/j.snb.2006.01.018
  19. B. Lim, B. Cho, J.-K. Shin, H.-J. Choi, S.-H. Seo, S.-W. Choi, and H. S. Chun, “Detection of zearalenone using a metal-oxide-semiconductor field-effect-transistor-based biosensor employing a Pt reference electrode”, Jpn. J. Appl. Phys., vol. 48, no. 6, pp. 06FJ06-1-06FJ06-4, 2009. https://doi.org/10.1143/JJAP.48.06FJ06
  20. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review”, Sens. Actuators B, vol. 54, pp. 3-15, 1999. https://doi.org/10.1016/S0925-4005(98)00321-9
  21. M. Mrksich and G. M. Whitesides, “Patterning self- assembled monolayers using microcontact printing: A new technology for biosensors?”, Trends Biotechnol., vol. 13, p. 228, 1995. https://doi.org/10.1016/S0167-7799(00)88950-7
  22. B. Razavi, Fundamentals of Microelectronics, John Wiley & Sons, New Jersey, pp. 298-303, 2008.
  23. P. Estrella, D. Paul, Q. Song, L. K. J. Stadler, L. Wang, E. Huq, J. J. Davis, P. K. Ferrigno and P, Migliorato, “Label-free sub-picomolar protein detection with field-effect transistors”, Analytical Chemistry, vol. 82, no. 9, pp. 3531-3536, 2010. https://doi.org/10.1021/ac902554v