Acknowledgement
This work was supported by the Technology Innovation Program Development of next-generation power semiconductor based on Si-on-SiC structure(RS-2022-00154720) Ministry of Trade, Industry & Energy(MOTIE, Korea), Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0012451). The present research has been conducted by the Excellent researcher support project of Kwangwoon University in 2022.
References
- Baliga, B. J., "Fundamentals of power semiconductor devices," Springer Science & Business Media. 2010. DOI: 10.1007/978-0-387-47314-7
- Persson, C., & Lindefelt, U., "Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap," Physical Review B, Vol.54, No.15, pp.10257. 1996. DOI: 10.1103/PhysRevB.54.10257
- She, X., Huang, A. Q., Lucia, O., & Ozpineci, B., "Review of silicon carbide power devices and their applications," IEEE Transactions on Industrial Electronics, Vol.64, No.10, pp.8193-8205. 2017. DOI: 10.1109/TIE.2017.2652401
- Elasser, A., & Chow, T. P. "Silicon carbide benefits and advantages for power electronics circuits and systems," Proceedings of the IEEE, Vol.90, No.6, pp.969-986. 2002. DOI: 10.1109/JPROC.2002.1021562
- J. N. Shenoy, J. A. Cooper, and M. R. Melloch, "High-voltage double implanted power MOSFETs in 6H-SiC," IEEE Electron Device Lett., vol.18, no.3, pp.93-95, 1997. DOI: 10.1109/55.556091
- S.-H. Ryu, S. Krishnaswami, M. Das, J. Richmond, A. Agarwal, J. Palmour, and J. Scofield, "10 kV 123 mΩ-cm2 4H-SiC power DMOSFETs," IEEE Electron Device Lett., vol.25, no.8, pp.556-558, 2004. DOI: 10.1109/LED.2004.832122
- G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, W. Holland, M. K. Das, and J. W. Palmour, "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide," IEEE Electron Device Lett., vol.22, no.4, pp.176-178, 2001. DOI: 10.1109/55.915604
- C.-Y. Lu, J. A. Cooper, Jr., T. Tsuji, G. Chung, J. R. Williams, K. McDonald, and L. C. Feldman, "Effect of process variations and ambient temperature on electron mobility at SiO2 /4H-SiC interface," IEEE Trans. Electron Devices, vol.50, no.7, pp.1582-1588, 2003. DOI: 10.1109/TED.2003.814974
- M. Matin, A. Saha, and J. A. Cooper, Jr., "A self-aligned process for high voltage, short-channel vertical DMOSFETs in 4H-SiC," IEEE Trans. Electron Devices, vol. 51, no.10, pp.1721-1725, 2004. DOI: 10.1109/TED.2004.835622
- S.-H. Ryu, S. Krishnaswami, B. Hull, B. Heath, M. Das, J. Richmond, A. Agarwal, J. Palmour, and J. Scofield, "Development of 8 mΩ-cm2, 1.8 kV 4H-SiC DMOSFETs," Mater. Sci. Forum, vol. 527-529, no.2, pp.1261-1264, 2006. DOI: 10.4028/www.scientific.net/MSF.483-485.797
- S.-H. Ryu, S. Krishnaswami, M. Das, B. Hull, J. Richmond, B. Heath, A. Agarwal, J. Palmour, and J. Richmond, "10.3 mohm-cm2, 2 kV power DMOSFETs in 4H-SiC," in Proc. 17th Int. Symp. Power Semicond. Devices & IC's, pp.275-278, 2005. DOI: 10.1109/ISPSD.2005.1488004
- Saha, A., & Cooper, J. A. "A 1-kV 4H-SiC power DMOSFET optimized for low on-resistance," IEEE Transactions on Electron Devices, Vol.54, No.10, pp.2786-2791. 2007. DOI: 10.1109/TED.2007.904577
- Shi, S., Zhou, X., Yue, R., & Wang, Y. "An improved structure of 3.3 kV 4H-SiC VDMOSFETs with lower on-resistance and reverse transfer capacitance," In 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) IEEE, pp.1080-1082, 2016.
- Kimoto, T., & Cooper, J. A. "Fundamentals of silicon carbide technology: growth, characterization," devices and applications. John Wiley & Sons, 2014. DOI: 10.1002/9781118313534
- Ahn, J. J., Moon, K. S., & Koo, S. M. "Optimization of 4H-SiC Vertical MOSFET by Current Spreading Layer and Doping Level of Epilayer," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol.23, No.10, pp.767-770. 2010. DOI: 10.4313/JKEM.2010.23.10.767